“ANÁLISIS DE PRE-OPERATIVIDAD DE LA LÍNEA DE TRANSMISIÓN CARHUAQUERO - CAJAMARCA NORTE – CACLIC PARA SU INTERCONEXIÓN AL SEIN EN 220 kV”

Código CTI : 04030102: Modelamiento y simulación de sistemas energéticos.

Código UNESCO : 3306 : Ingeniería y Tecnología Eléctricas.
3306.09 : Transmisión y Distribución.

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO ELECTRICISTA

Presentado por:

Bach. Albert Paul, TORIBIO SALAZAR

HUANCAYO - PERÚ

2015
ASESOR

Mg. Ing. Juan Guido Arellano Guerrero.
DEDICATORIA

A mis padres por el apoyo que me brindaron y por ser mis guías en todo momento.

A mi hermana por el apoyo que me brindo en todo momento.

Albert.
ÍNDICE

CARÁTULA

ASESOR.. I

DEDICATORIA... II

ÍNDICE.. III

RESUMEN.. VII

INTRODUCCIÓN.. 1

CAPÍTULO I

PLANTEAMIENTO DEL ESTUDIO.

1.1. Planteamiento y formulación del problema de investigación.................. 2
 1.1.1. Planteamiento del problema... 2

1.2. Formulación del problema... 3

1.3. Formulación de variables.. 4

1.4. Operacionalización de las variables... 5

1.5. Justificación de la investigación.. 6

1.6. Objetivos... 7
 1.6.1. Objetivo general... 8
 1.6.2. Objetivos específicos... 8

1.7. Formulación de hipótesis.. 8

1.8. Metodología de trabajo... 9

CAPÍTULO II

ANÁLISIS DEL SISTEMA ELÉCTRICO.

2.1. Análisis del flujo de potencia.. 13
CAPÍTULO III

ESTABILIDAD DE UN SISTEMA ELÉCTRICO DE POTENCIA.

3.1. El problema de la estabilidad en sistemas eléctricos de potencia.................. 43
 3.1.1. Antecedentes de estudios en el área de la estabilidad de voltaje.... 45
 3.1.2. Naturaleza del fenómeno de la estabilidad de voltaje……………… 46

3.2. Conceptos básicos para realizar un estudio de estabilidad de voltaje………. 52
 3.2.1. Definiciones... 52
 3.2.2. Fundamentos... 57
 3.2.3. Curvas PV... 62
 3.2.4. Curvas VQ... 69

3.3. Aplicaciones del análisis de estabilidad de voltaje................................. 74
 3.3.1. Sistema de dos barras.. 74
 3.3.2. Modelo sistema de dos barras.. 77

CAPÍTULO IV
RESUMEN

La presente tesis tiene por finalidad Evaluar el impacto de la puesta en servicio de la Línea de Transmisión Carhuaquero – Cajamarca Norte – Càlich en 220 kV y Subestaciones Asociadas sobre la operación del SEIN. Se verificarán las sobrecargas en las líneas de transmisión, perfiles de tensión en las barras, niveles de cortocircuito y se analizará la estabilidad transitoria del sistema eléctrico ante fallas en la zona de influencia.

Tomando como referencia el documento “Procedimiento Técnico del Cómite de Operación Económica del SEIN PR-20” referido al ingreso, modificación y retiro de instalaciones al SEIN.

La presente tesis muestra la ejecución de los siguientes análisis:

- Análisis de la operación en estado estacionario en condiciones normales.
- Análisis de la operación en estado estacionario en condiciones de contingencias.
- Cálculos de cortocircuitos.
- Estimaciones de Estabilidad Transitoria
INTRODUCCIÓN

Actualmente la empresa COBRA viene desarrollando los estudios y los proyectos para la puesta en operación comercial del proyecto LT Carhuaquero – Cajamarca Norte – Cálicl – Moyobamba Nueva 220 kV y Subestaciones Asociadas. Esta a su vez, ha derivado a la empresa CESEL S.A. el encargo de realizar el Estudio de Pre-Operatividad con el fin de cumplir los requerimientos del COES exigidos para la puesta en operación comercial del proyecto.

La presente tesis se encuentra dividida en los siguientes análisis:

En el capítulo I en el planteamiento del estudio.

En el capítulo II se hace un análisis del sistema eléctrico que corresponde básicamente identificando los parámetros eléctricos para realizar los estudios de flujo de potencia en máxima y mínima demanda considerando diferentes escenarios de análisis y el estudio de las corrientes de cortocircuito para las diferentes fallas del sistema eléctrico en estudio.

En el capítulo III damos a conocer los criterios básicos de estabilidad transitoria.

En el capítulo IV damos a conocer el análisis y discusión de los resultados.

Finalmente en los respectivos anexos se muestran en detalle las simulaciones en condiciones de avenida y estiaje considerando además condiciones de máxima y mínima demanda, así los respectivos análisis de estabilidad transitoria en el sistema eléctrico de potencia en estudio.
CAPÍTULO I

PLANTEAMIENTO DEL ESTUDIO

1.1. PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA DE INVESTIGACIÓN.

1.1.1. PLANTEAMIENTO DEL PROBLEMA.

Actualmente la empresa COBRA viene desarrollando los estudios y los proyectos para la puesta en operación comercial del proyecto Línea de Transmisión Carhuaquero – Cajamarca Norte – Cácllic en 220 kV. Esta a su vez, ha derivado a la empresa CESEL S.A. el encargo de realizar el Estudio de Pre-Operatividad con el fin de cumplir los requerimientos del COES exigidos para la puesta en operación comercial del proyecto.

La operación de las respectivas líneas de transmisión permitirán dotar del suministro de energía eléctrica a los sistemas eléctricos ubicados en la zona norte del país debido al crecimiento energético todo ello para cumplir con los estándares de calidad que exige la normatividad vigente.

Dentro del presente estudio se realizaran los siguientes análisis eléctricos.

- Modelamiento del SEIN.
- Análisis eléctricos en estado estable para condiciones normales de operación y de contingencia.
Análisis de cortocircuito.
Análisis de estabilidad.

En la presente tesis se va a analizar el impacto de la puesta en servicio de la línea de transmisión Carhuaquero – Cajamarca Norte – Cálcic en 220 kV sobre la operación del Sistema Interconectado Nacional y se verificarán las sobrecargas en las líneas de transmisión, perfiles de tensión en las barras, niveles de cortocircuito y se analizará la estabilidad transitoria del sistema eléctrico ante fallas en la zona de influencia.

1.2. FORMULACIÓN DEL PROBLEMA.

La formulación de nuestro problema será:

PROBLEMA GENERAL:
¿Cómo realizar el análisis de pre-operatividad de la línea de transmisión Carhuaquero – Cajamarca Norte – Cálcic para su interconexión al SEIN en 220 kV debido a la creciente demanda de energía en la zona norte del país?

PROBLEMA ESPECÍFICO:
1. ¿Cómo calcular flujo de potencia del sistema eléctrico Carhuaquero, Cajamarca Norte, Cálcic en 220 kV interconectado al SEIN en condiciones de mínima y máxima demanda?.
2. ¿Cómo determinar las corrientes de cortocircuito del Sistema eléctrico Carhuaquero, Cajamarca Norte, Cálcic en 220 kV interconectado al SEIN ante las diferentes fallas que puedan ocurrir?

1.3. FORMULACIÓN DE VARIABLES.

Las respectivas variables para realizar el presente estudio serán:

VARIABLE INDEPENDIENTE.
VARIABLE DEPENDIENTE.

- La interconexión al SEIN en 220 kV.

La interconexión al SEIN en 220 kV está en función al Análisis de Pre-Operatividad de la Línea de Transmisión Carhuaquero - Cajamarca Norte – Caclic.

1.4. OPERACIONALIZACION DE LAS VARIABLES.

VARIABLE INDEPENDIENTE.

Operación de la variable independiente.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimensiones</th>
<th>Indicadores</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Flujo de carga.</td>
<td>Operación normal.</td>
<td>Las tensiones en barras deben estar dentro del rango ± 5 %.</td>
<td></td>
</tr>
<tr>
<td>b) Cortocircuitos.</td>
<td>Operación en contingencia.</td>
<td>El nivel de tensión comprendido entre 0.90 y 1.10 p.u. en operación.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I”’k: Corriente inicial de cortocircuito</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apertura de falla y despeje de la falla trifásica.</td>
<td></td>
</tr>
</tbody>
</table>
VARIABLE DEPENDIENTE.

Operación de la variable dependiente

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimensiones</th>
<th>Indicadores</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>La interconexión al SEIN en 220 kV</td>
<td>Diseño de la red</td>
<td>Diseño e implementación de la topología de la red</td>
<td>Modelamiento de la red y elementos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interconexión al sistema (SEIN).</td>
</tr>
</tbody>
</table>

1.5. JUSTIFICACIÓN DE LA INVESTIGACIÓN.

El presente estudio de tesis tiene por finalidad analizar la pre-operatividad de la línea de transmisión Carhuaquero - Cajamarca Norte - Caclí en 220 kV interconectado al SEIN debido a la demanda de energía eléctrica en la zona norte del país.

La presente investigación de tesis se realizó debido a los siguientes motivos:

Justificación Teórica: Para esta investigación se usó los modelos de los componentes que conforman el sistema eléctrico Carhuaquero, Cajamarca Norte, Caclí en 220 kV interconectado al SEIN empleados para el análisis del flujo de potencia, cortocircuito y el análisis de estabilidad transitoria producidos por las diferentes cargas del sistema y por las fuentes de generación inyectados al SEIN con la finalidad de analizar el comportamiento de operación en estados normal y de contingencias en condiciones de máxima y mínima demanda.
Justificación Práctica: El resultado de la investigación es práctica porque se determinó las características operativas del sistema eléctrico de potencia Carhuaquero, Cajamarca Norte, Caclíc en 220 kV interconectado al SEIN con la finalidad de garantizar el suministro de energía eléctrica con parámetros adecuados que exige la norma técnica de calidad de los servicios eléctricos vigente.

Justificación Metodológica: Para lograr el adecuado análisis de estabilidad transitoria del sistema eléctrico de potencia Carhuaquero, Cajamarca Norte, Caclíc en 220 kV interconectado al SEIN se realiza simulaciones en condiciones de máxima y mínima demanda mediante el software DigSilent Power Factory.

Por lo tanto el presente estudio de tesis se justifica su investigación para lograr un suministro de energía eléctrica de manera continua, eficiente y confiable que exige los estándares de calidad vigente en el Sistema Eléctrico Interconectado Nacional.

1.6. OBJETIVOS.

Los objetivos planteados para el desarrollo de la presente tesis serán:

1.6.1 OBJETIVO GENERAL.

Realizar el análisis de pre-operatividad de la línea de transmisión Carhuaquero – Cajamarca Norte – Caclíc para su interconexión al SEIN en 220 kV debido a la creciente demanda de energía en la zona norte del país sin deteriorar los márgenes de tensiones en la zona de influencia del sistema eléctrico de potencia.

1.6.2 OBJETIVOS ESPECIFICOS:

1. Calcular mediante simulación el flujo de potencia del sistema eléctrico
Carhuaquero, Cajamarca Norte, Caclíc en 220 kV interconectado al SEIN en condiciones de mínima y máxima demanda.

2. Determinar mediante simulación las corrientes de cortocircuito debido a las posibles fallas en el sistema eléctrico Carhuaquero, Cajamarca Norte, Caclíc en 220 kV interconectado al SEIN.

1.7. FORMULACIÓN DE HIPÓTESIS.

Hipótesis General:

Si se realiza un adecuado análisis de pre-operatividad de la línea de transmisión Carhuaquero – Cajamarca Norte – Caclíc para su interconexión al SEIN en 220 kV debido a la creciente demanda de energía en la zona norte del país entonces se logrará suministrar la energía eléctrica de forma continua y con los respectivos estándares de calidad sin deteriorar los márgenes de tensiones en la zona de influencia del sistema eléctrico de potencia.

Hipótesis Específicos:

1. Si se determina los flujos de potencia con el software DigSilent Power Factory del sistema eléctrico Carhuaquero, Cajamarca Norte, Caclíc en 220 kV interconectado al SEIN entonces se garantizará el suministro de energía eléctrica con los parámetros adecuados de calidad.

2. Si se determina las corrientes de cortocircuito con el software DigSilent Power Factory para diferentes tipos de fallas en el sistema eléctrico Carhuaquero, Cajamarca Norte, Caclíc en 220 kV interconectado al SEIN entonces nos permitirá obtener los parámetros de fallas para realizar un adecuado análisis de estabilidad transitoria.
1.8. METODOLOGÍA DE TRABAJO.

El tipo de investigación es aplicada porque se realizó simulaciones del sistema eléctrico de potencia Carhuaquero, Cajamarca Norte, Caclic en 220 kV interconectado al SEIN para determinar los parámetros de flujos de potencia, niveles de cortocircuito y el análisis de estabilidad mediante el software DigSilent Power Factory.

El nivel de investigación para la presente tesis es tecnológico porque se usó los conocimientos teóricos aplicados al presente tema de tesis.

PROCEDIMIENTO DE LA INVESTIGACIÓN:

El método de nuestra investigación es analítico puesto que realizamos las simulaciones de corrientes de cortocircuitos para realizar el análisis de estabilidad transitoria.

El diseño de nuestra investigación es descriptivo – analítico, debido al uso de instrumentos de análisis de simulación por medio del software DigSilent Power Factory con los cuales nos permitió modelar, simular las características operativas y las respectivas curvas del análisis de estabilidad transitoria del sistema eléctrico en estudio.

TÉCNICAS DE INVESTIGACIÓN:

Para poder recolectar la información necesaria para nuestra investigación realizamos las siguientes gestiones:
La información principal fue proporcionada por la empresa COBRA que se adjudicó las obras de construcción de la línea de transmisión Carhuaquero – Cajamarca Norte – Caclip en 220 kV y los parámetros del sistema eléctrico en estudio ha sido proporcionado por el COES con la finalidad de lograr un adecuado diagrama unifilar del sistema eléctrico materia de estudio los cuales están referidos a:

• Parámetros eléctricos de las líneas de transmisión en 220 kV que conforman el sistema eléctrico en estudio.
• Parámetros de los transformadores de potencia.
• Parámetros de cargas del sistema en estudio.
• Parámetros eléctricos de los grupos de generación.

Otra fuente de información será obtenida de textos especializados tales como: Stándares del IEEE, Normas eléctricas vigentes, Estudios de los rechazos de carga realizados por el COES.

TRATAMIENTOS DE LA INVESTIGACION:

Los procedimientos de la investigación se basarán en simulaciones bajo condiciones de los diferentes escenarios utilizando para ello el software DigSilent Power Factory.

Estas simulaciones se dividirán en los siguientes escenarios:
Simulación del flujo de potencia mediante el software DigSilent Power Factory para diferentes escenarios del sistema eléctrico de potencia Carhuaquero – Cajamarca Norte – Cacic en 220 kV en condiciones de operación normal y de contingencias.

Simulación de las corrientes de cortocircuito monofásico y trifásico mediante el software DigSilent Power Factory para diferentes escenarios del sistema eléctrico de potencia Carhuaquero – Cajamarca Norte – Cacic en 220 kV.

Análisis de estabilidad transitoria mediante el software DigSilent Power Factory para diferentes escenarios del sistema eléctrico de potencia Carhuaquero – Cajamarca Norte – Cacic en 220 kV.
CAPÍTULO II

ANÁLISIS DEL SISTEMA ELÉCTRICO

2.1. ANÁLISIS DEL FLUJO DE POTENCIA.

El cálculo del flujo de potencia consiste en evaluar el punto de operación en estado estacionario de un sistema eléctrico para condiciones de generación, carga y su respectiva configuración.

Los objetivos principales al resolver un flujo de potencia son:

a. Demostrar, mediante el análisis de operación en estado estacionario, que la conexión al SEIN de las instalaciones del proyecto no tendrán un efecto negativo sobre las condiciones de operación del sistema eléctrico de transmisión.

b. Conocer los valores de los perfiles de tensión, nivel de carga de las líneas de transmisión y nivel de carga de los transformadores de potencia, cuando se implemente el proyecto.

c. Determinar los valores de corrientes de falla trifásica, monofásica y bifásica a tierra, así como realizar el análisis de las corrientes de interrupción de los equipos a ser instalados y evaluar la capacidad de los transformadores de corriente asociados al presente proyecto.
2.1.1. MODELO DE LOS ELEMENTOS DE UN SISTEMA ELÉCTRICO DE POTENCIA.

Líneas de transmisión.

Una línea de transmisión conectada a las barras i-k de un sistema de energía eléctrica se puede representar por el modelo equivalente \(\pi \), mostrado en la figura Nº 2.1 y definido por las características físicas de la línea: la conductancia serie \(G_{ik} \), la susceptancia serie \(B_{ik} \) y la mitad de la susceptancia shunt (conectado a tierra) \(B'_{ik} \).

La admitancia serie \(Y_{ik} \) está definida por:

\[
\bar{Y}_{ik} = G_{ik} + jB_{ik}
\]

\[
\bar{Z}_{ik} = R_{ik} + jX_{ik}
\]

\[
\bar{Y}_{ik} = \frac{1}{\bar{Z}_{ik}}
\]

Transformadores.

a) Transformadores de dos devanados:

Podemos representarlo de la siguiente manera:

![Fig. N° 2.2: Modelo de un transformador de dos devanados](image-url)

Donde:
X: Reactancia en p.u. de los devanados primario y secundario visto desde el lado secundario en %.

a) Relación de transformación en p.u. visto del lado primario en p.u.

\[
X = V_{cc} \cdot \frac{N_b}{N_n} \left(\frac{V_s}{V_{bs}} \right)^2 \% \\
a = \frac{t_p}{t_s} \cdot \frac{V_p}{V_s} \cdot \frac{V_{bs}}{V_{bp}} \text{ p.u.}
\]

Donde:

- \(V_{cc} \): Tensión de cortocircuito en base \(N_n \) en %.
- \(V_p \): Tensión nominal en el lado primario en kV.
- \(V_s \): Tensión nominal en el lado secundario en kV.
- \(V_{bp} \): Tensión base en el lado primario en kV.
- \(V_{bs} \): Tensión base en el lado secundario en kV.
- \(N_n \): Potencia de base en el cual se ha medido la tensión de cortocircuito. Habitualmente es el nominal en MVA.
- \(N_b \): Potencia escogida como base en MVA.
- \(T_p \): Posición del Tap del lado primario referido a la tensión nominal primaria del transformador en p.u.
- \(T_s \): Posición del Tap del lado secundario referido a la tensión nominal secundaria del transformador en p.u.

b) Transformadores de tres devanados:

Calculando previamente las siguientes relaciones:

\[
\sum Z = Z_{ps} + Z_{pt} + Z_{st}
\]

\[
Z_{ps} = V_{cc ps} \frac{N_b}{N_{bp s}} \quad Z_{pt} = V_{cc pt} \frac{N_b}{N_{bp t}}
\]
\[Z_{st} = Vcc_{st} \frac{Nb}{Nb_{st}} \]

Su modelo se representa de la siguiente manera:

![Diagrama del modelo de un transformador de tres devanados](image)

Fig. N° 2.3: Modelo de un transformador de tres devanados

Entonces se tiene:

\[Z_p = \frac{1}{2} \sum (Z - Z_{st}) \quad Z_s = \frac{1}{2} \sum (Z - Z_{pt}) \]

\[Z_t = \frac{1}{2} \sum (Z - Z_{ps}) \]

\[a_p = \frac{V_p}{Vb_p} \quad a_s = \frac{V_s}{Vb_s} \quad a_t = \frac{V_t}{Vb_t} \]

Donde:

- \(V_p \): Tensión nominal en el lado primario en kV.
- \(V_s \): Tensión nominal en el lado secundario en kV.
- \(V_t \): Tensión nominal en el lado terciario en kV.
- \(V_{bp} \): Tensión de base en el lado primario en kV.
- \(V_{bs} \): Tensión de base en el lado secundario en kV.
- \(V_{bt} \): Tensión de base en el lado terciario en kV.
- \(V_{ccps} \): Tensión de cortocircuito entre los devanados primario y secundario con el terciario abierto expresado en la potencia de base \(Nb_{ps} \) en \%.
Vccpt : Tensión de cortocircuito entre los devanados primario y terciario con el secundario abierto expresado en la potencia de base Nbpt en %.

Vccst : Tensión de cortocircuito entre los devanados secundario y terciario con el primario abierto expresado en la potencia de base Nbst en %.

Nb : Potencia escogida como base en MVA.

Nbps : Potencia base en que se expresa la tensión de cortocircuito entre los devanados primario y secundario en MVA.

Nbpt : Potencia base en que se expresa la tensión de cortocircuito entre los devanados primario y terciario en MVA.

Nbst : Potencia base en que se expresa la tensión de cortocircuito entre los devanados secundario y terciario en MVA.

Zp : Impedancia representativa del devanado primario expresado en bases de la potencia Nb y la tensión Vbp en %.

Zs : Impedancia representativa del devanado secundario expresado en bases de la potencia Nb y la tensión Vbs en %.

Zt : Impedancia representativa del devanado terciario expresado en bases de la potencia Nb y la tensión Vbt en %.

2.1.2. FORMA GENERAL DE ECUACIONES.

En general el flujo de carga se puede formular:

\[
\overline{Y}\overline{V} = \overline{I} \tag{1}
\]

\[
\overline{S}_i = \overline{V}_i\overline{I}_i^* \tag{2}
\]

\[
\overline{I}_i = \frac{\overline{S}_i^*}{\overline{V}_i} = \frac{P_i - jQ_i}{\overline{V}_i^*} \tag{3}
\]
\[S_{ik}^* = P_{ik} - jQ_{ik} \] \[\text{[4]} \]

\[
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_n
\end{bmatrix} = \begin{bmatrix}
\overline{V}_{11} & \overline{X}_{12} & \overline{V}_{13} & \cdots & \overline{X}_{1u} & \cdots & \overline{X}_{1n} \\
\overline{X}_{21} & \overline{V}_{22} & \overline{X}_{23} & \cdots & \overline{X}_{2u} & \cdots & \overline{X}_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\overline{X}_{n1} & \overline{X}_{n2} & \overline{X}_{n3} & \cdots & \overline{X}_{nu} & \cdots & \overline{X}_{nn}
\end{bmatrix} \begin{bmatrix}
\overline{V}_1 \\
\overline{V}_2 \\
\vdots \\
\overline{V}_n
\end{bmatrix}
\]

\[I_i = \overline{Y}_{i1} \overline{V}_1 + \overline{Y}_{i2} \overline{V}_2 + \cdots + \overline{Y}_{ii} \overline{V}_i + \cdots + \overline{Y}_{in} \overline{V}_n \]

\[I_i = \sum_{k=1}^{n} \overline{Y}_{ik} \overline{V}_k \] \[\text{[5]} \]

Para \((i = 1, 2, \ldots, n)\)

\[\frac{P_i - jQ_i}{\overline{V}_i^*} = \sum_{k=1}^{n} \overline{Y}_{ik} \overline{V}_k \] \[\text{[6]} \]

\[P_i - jQ_i = \overline{V}_i^* \sum_{k=1}^{n} \overline{Y}_{ik} \overline{V}_k \] \[\text{[7]} \]

\[S_i^* = \overline{V}_i^* \sum_{k=1}^{n} \overline{Y}_{ik} \overline{V}_k \]

\[S_i = \overline{V}_i \sum_{k=1}^{n} \overline{Y}_{ik}^* \overline{V}_k^* \] \[\text{[8]} \]

\[S_i = |\overline{V}_i| |\theta_i| \sum_{k=1}^{n} (G_{ik} + jB_{ik})^* |\overline{V}_k| |\theta_k| - |\theta_k| \]

\[\overline{S}_i = |\overline{V}_i| \sum_{k=1}^{n} (G_{ik} + jB_{ik})^* |\overline{V}_k| |\theta_k - \theta_i| \] \[\text{[9]} \]

Donde \(\theta_{ik}\) es la diferencia angular de la línea i-k dada por:

\[\theta_{ik} = \theta_i - \theta_k \]
\[\bar{S}_i = |V_i| \sum_{k=1}^{n} (G_{ik} - jB_{ik}) |V_k| \left(\text{Cos}(\theta_{i} - \theta_{k}) + j \text{Sen}(\theta_{i} - \theta_{k}) \right) \]

\[\bar{S}_i = |V_i| \sum_{k=1}^{n} |V_k| \left((G_{ik} \text{Cos}\theta_{ik} + B_{ik} \text{Sen}\theta_{ik}) + j(G_{ik} \text{Sen}\theta_{ik} - B_{ik} \text{Cos}\theta_{ik}) \right) \] \[\text{[10]} \]

También se puede expresar de la siguiente manera:

\[P_i = |V_i| \sum_{k=1}^{n} |V_k| \left(G_{ik} \text{Cos}\theta_{ik} + B_{ik} \text{Sen}\theta_{ik} \right) \] \[\text{[11]} \]

\[Q_i = |V_i| \sum_{k=1}^{n} |V_k| \left(G_{ik} \text{Sen}\theta_{ik} - B_{ik} \text{Cos}\theta_{ik} \right) \] \[\text{[12]} \]

Esto es una ecuación de balance de potencia que indica como la potencia inyectada en un nodo es igual a la suma de todos los flujos de potencia que salen de ese nodo. Así, la expresión resultante es:

\[P_i = G_{ii} |V_i|^2 + |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \text{Cos}\theta_{ik} + B_{ik} \text{Sen}\theta_{ik} \right) \] \[\text{[13]} \]

Donde \(G_{ii} \) está definido por:

\[G_{ii} = \sum_{k=1}^{N} \left(-G_{ik} \right) \]

Del mismo modo para la inyección neta de potencia reactiva.

\[Q_i = -B_{ii} |V_i|^2 + |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \text{Sen}\theta_{ik} - B_{ik} \text{Cos}\theta_{ik} \right) \] \[\text{[14]} \]

Donde \(B_{ii} \) está definido por:

\[B_{ii} = \sum_{k=1}^{N} \left(B_{ik}^* - B_{ik} \right) \]

2.1.3. FORMULACIÓN DE LAS ECUACIONES POR EL MÉTODO DE GAUSS-SEIDEL.
Para resolver un sistema de potencia por el método de Gauss Seidel se deben suponer los valores iniciales de los voltajes (tanto en magnitud como en ángulo) de cada barra del sistema.

Por facilidad se acostumbra suponer el vector de voltajes iniciales de la siguiente manera:

- En las barras PQ se supone la magnitud unitaria (en p.u.) y el ángulo cero.
- En las barras PV se coloca la magnitud de voltaje dada (conocida) y el ángulo cero.
- En la barra de referencia (Slack) se coloca el voltaje de referencia y el ángulo de referencia que generalmente es cero grados.

De la ecuación:

\[
\frac{\bar{S}_i^*}{V_i} = \sum_{k=1}^{n} \bar{Y}_{ik} \bar{V}_k
\]

De la ecuación: \[15\]

Si el nodo slack lo suponemos como último nodo, entonces la ecuación [15] se puede escribir:

\[
\frac{\bar{S}_i^*}{V_i} = \sum_{k=1}^{n-1} \bar{Y}_{ik} \bar{V}_k + \bar{Y}_{in} \bar{V}_n
\]

Donde el término \(\bar{Y}_{in} \bar{V}_n\) se refiere al nodo slack, es conocido y constante.

Entonces tenemos:

\[
\bar{Y}_{ii} V_i = \frac{\bar{S}_i^*}{V_i} - \bar{Y}_{in} \bar{V}_n - \sum_{k=1}^{i-1} \bar{Y}_{ik} \bar{V}_k - \sum_{k=i+1}^{n-1} \bar{Y}_{ik} \bar{V}_k
\]
\[
\bar{V}_i = \frac{1}{Y_{ii}} \left[\frac{S_i}{V_i} - \bar{Y}_{in} \bar{V}_n - \sum_{k=1}^{i-1} \bar{Y}_{ik} \bar{V}_k - \sum_{k=i+1}^{n-1} \bar{Y}_{ik} \bar{V}_k \right]
\] \[16\]

Si “m” es el número de iteración, entonces se puede escribir:

\[
\bar{V}_{i(m)} = \frac{1}{Y_{ii}} \left[\frac{S_i}{V_{i(m-1)}} - \bar{Y}_{in} \bar{V}_n - \sum_{k=1}^{i-1} \bar{Y}_{ik} \bar{V}_{k(m)} - \sum_{k=i+1}^{n-1} \bar{Y}_{ik} \bar{V}_{k(m-1)} \right]
\] \[17\]

Se itera hasta que los valores de \(V_i \) y de \(\Theta_i \) converjan a un valor o dicho de otra manera cuando:

\[
|\Theta_{i(m)}| - |\Theta_{i(m+1)}| < \varepsilon_1
\]

\[
|V_{i(m)}| - |V_{i(m+1)}| < \varepsilon_2
\]

Para \(i = 1, 2, \ldots \) NB (NB: Número de barras de la red)

Generalmente epsilón (\(\varepsilon \)) es del orden de \(10^{-3} \).

2.1.4. FORMULACIÓN DE LAS ECUACIONES POR EL MÉTODO DE NEWTON – RAPHSO.

Para solucionar el problema de flujo de potencia, se procede:

\[
F(x) = \begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix} = \begin{bmatrix}
P_{sp} - P_{\text{calc}} \\
Q_{sp} - Q_{\text{calc}}
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\] \[18\]

Donde:

sp: especificado \hspace{1cm} \text{calc: calculado}

\[
P_{\text{calc}(i)} = G_{ii} \left| V_i \right|^2 + \left| V_i \right| \sum_{k=1}^{N} \left| V_k \right| \left(G_{ik} \cos \Theta_{ik} + B_{ik} \sin \Theta_{ik} \right)
\]
\[Q_{calc(i)} = -B_{ii}|V_i|^2 + |V_i| \sum_{k=1 \atop k \neq i}^N |V_k|(G_{ik}\text{Sen}\theta_{ik} - B_{ik}\text{Cos}\theta_{ik}) \]

Por lo tanto, los incrementos de potencia activa y reactiva en cada nodo del sistema serán:

\[\Delta P_i = P_{sp(i)} - G_{ii}|V_i|^2 - |V_i| \sum_{k=1 \atop k \neq i}^N |V_k|(G_{ik}\text{Cos}\theta_{ik} + B_{ik}\text{Sen}\theta_{ik}) = 0 \quad [19] \]

\[\Delta Q_i = Q_{sp(i)} + B_{ii}|V_i|^2 - |V_i| \sum_{k=1 \atop k \neq i}^N |V_k|(G_{ik}\text{Sen}\theta_{ik} - B_{ik}\text{Cos}\theta_{ik}) = 0 \quad [20] \]

Para el flujo de carga se tiene:

\[X = \begin{bmatrix} \theta \\ V \end{bmatrix} \quad H = \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} \]

Vector de estado Vector de correcciones de X

Por lo tanto la matriz jacobiana será de la siguiente manera:

Cuando las barras son PQ, el sistema presenta “2n-1” incógnitas, puesto que en el nodo slack se conocen V y \(\theta \). El número de incógnitas disminuye también en igual proporción que el número de barras PV con que cuenta la red. Es decir:
Por facilidad en el cálculo del jacobiano es conveniente multiplicar las submatrices N y L por V, y dividir el vector de corrientes de voltaje ΔV por V también para que no se altere la ecuación F(x) = -J.H, tal como se muestra en la ecuación:

\[
\begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial \Delta P}{\partial \theta} & V \frac{\partial \Delta P}{\partial V} \\
\frac{\partial \Delta Q}{\partial \theta} & V \frac{\partial \Delta Q}{\partial V}
\end{bmatrix}
\begin{bmatrix}
\Delta \theta \\
\Delta V
\end{bmatrix}
\]

Los términos del jacobiano se obtienen derivando las funciones ΔP y ΔQ con respecto a θ y V respectivamente, tal como se indica:

Elemento de la diagonal principal:

\[
H_{ii} = \frac{\partial}{\partial \theta_i} \left[P_{sp(i)} - G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) \right]
\]

\[
H_{ii} = -|V_i| \sum_{k=1, k \neq i}^{N} |V_k| (-G_{ik} \sin \theta_{ik} + B_{ik} \cos \theta_{ik})
\]
Teniendo en cuenta la ecuación [20] se tiene:

\[H_{ii} = Q_{sp(i)} + B_{ii} |V_i|^2 \] \[23\]

Elementos fuera de la diagonal principal;

\[H_{ik} = \frac{\partial}{\partial \theta_k} \left[P_{sp(i)} - G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \right] \]

\[H_{ik} = -|V_i| |V_k| \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right) \] \[24\]

Los otros elementos serán:

\[M_{ii} = \frac{\partial}{\partial \theta} \left[Q_{sp(i)} + B_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \sin \theta_{ik} + B_{ik} \cos \theta_{ik} \right) \right] \]

\[M_{ii} = -|V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \]

Teniendo en cuenta la ecuación [19] se tiene:

\[M_{ii} = -P_{sp(i)} + G_{ii} |V_i|^2 \] \[25\]

Fuera de la diagonal principal;

\[M_{ik} = \frac{\partial \Delta Q_i}{\partial \theta_k} = |V_i| |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \] \[26\]

\[N_{ii} = |V_i| \frac{\partial}{\partial V_i} \left[P_{sp(i)} - G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \right] \]

\[N_{ii} = -2G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \]

\[N_{ii} = -P_{sp(i)} - G_{ii} |V_i|^2 \] \[27\]
\[N_{ik} = |V_k| \frac{\partial \Delta P_i}{\partial V_k} = -|V_i| \frac{\partial V_k}{\partial V_k} (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) \] \hspace{1cm} [28]

\[L_{ii} = |V_i| \frac{\partial \Delta Q_i}{\partial V_i} = -Q_{sp(i)} + B_{ii} |V_i|^2 \] \hspace{1cm} [29]

\[L_{ik} = |V_k| \frac{\partial \Delta Q_i}{\partial V_k} = -|V_i| \frac{\partial V_k}{\partial V_k} (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) \] \hspace{1cm} [30]

El flujo de potencia del sistema eléctrico se realizó en el programa computacional de DigSilent Power Factory V14.0.

2.2. ANÁLISIS DE CORTOCIRCUITO.

Este fenómeno representa la más severa a la que pueda verse sometida una instalación eléctrica ya que en su manifestación más acentuada produce efectos térmicos y dinámicos que en ocasiones se presentan con tal violencia que pueden provocar la destrucción mecánica de las máquinas e incluso de los materiales.

2.2.1. CARACTERÍSTICAS DEL CORTOCIRCUITO.

Los cortocircuitos pueden ser:

- **Monofásicos**: 80% de los casos.

- **Bifásicos**: 15% de los casos. Los de este tipo, suelen degenerar en trifásicos.

- **Trifásicos**: Sólo el 5% de los casos.
2.2.2. PARÁMETROS DEL SISTEMA PARA LOS CÁLCULOS DE CORTOCIRCUITO.

(Transformadores de dos devanados)

Sobre la base de las características nominales del transformador, los parámetros serán calculados de la siguiente manera:

\[
X_+ = X_{PU} \left(\frac{\frac{N_{B \text{ Nueva}}}{N_{B \text{ Original}}}}{\frac{V_{B \text{ Original}}}{V_{B \text{ Nueva}}}} \right)^2 \quad \text{p.u.}
\]

\[X_- = X_+ \quad y\]

\[X_0 = 0.85 \times X_+\]

Dónde:

- \(X_{PU}\): Tensión de cortocircuito en P.U.
- \(X_+\): Reactancia de secuencia positiva.
- \(X_-\): Reactancia de secuencia negativa.
Transformadores de tres devanados

Los transformadores de tres devanados están conformados básicamente por tres transformadores monofásicos. Sobre la base de las características nominales del transformador, los parámetros serán calculados de la siguiente manera:

Figura Nº 2.6. Unifilar de un transformador de tres devanados.

Figura Nº 2.7. Transformaciones triángulo - estrella.

\[
\begin{align*}
Z_{PS} &= Z_1 + Z_2 + \frac{Z_1 Z_2}{Z_3} \\
Z_{PT} &= Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2} \\
Z_{ST} &= Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1} \\
\end{align*}
\]

\[
\begin{align*}
Z_1 &= \frac{Z_{PT} Z_{PS}}{Z_{PT} + Z_{PS} + Z_{ST}} \\
Z_2 &= \frac{Z_{PS} Z_{ST}}{Z_{PT} + Z_{PS} + Z_{ST}} \\
Z_3 &= \frac{Z_{PT} Z_{ST}}{Z_{PT} + Z_{PS} + Z_{ST}}
\end{align*}
\]

\[
\begin{align*}
Z_{PS} &= Z_1 + Z_2 \\
Z_{PT} &= Z_1 + Z_3 \\
Z_{ST} &= Z_2 + Z_3
\end{align*}
\]
Figura N° 2.8. Representación de los transformadores de tres devanados.

\[\bar{P} = \frac{1}{2} [Z_{PS} + Z_{PT} - Z_{ST}] \]

\[Z_2 = \frac{1}{2} [Z_{ST} + Z_{PS} - Z_{ST}] \]

\[Z_3 = \frac{1}{2} [Z_{PT} + Z_{ST} - Z_{PS}] \]

\[X_{(+)} = X_{PU} \left(\frac{N_B \text{ Nueva}}{N_B \text{ Original}} \right) \left(\frac{V_B \text{ Original}}{V_B \text{ Nueva}} \right)^2 \text{ p.u.} \]

\[X_{(-)} = X_{(+)} \quad \text{y} \quad X_{(0)} = 0.85 \times X_{(+)} \]

Dónde:

- Xpu : Tensión de cortocircuito en P.U.
- X(+) : Reactancia de secuencia positiva.
- X(-) : Reactancia de secuencia negativa.
- X(0) : Reactancia de secuencia cero.

✔️ **Líneas de transmisión.**

La impedancia de secuencia positiva es la impedancia normal de una línea de transmisión. Existen varios libros especializados en métodos de obtención de la impedancia de líneas de transmisión.
En la práctica los parámetros de las líneas de transmisión son calculados teniendo en consideración las características de los conductores y sus respectivas disposiciones en las estructuras de transmisión.

a. **Cálculo de la reactancia inductiva por fase.**

\[
X_L = 2 \pi f \left(0,5 + 4,606 \log \frac{DMG}{RMG} \right) \times 10^{-4} \ \Omega / km
\]

\[
X_L = 0,17364 \log \frac{DMG}{RMG} \ \Omega / km
\]

Donde:

- \(f \) : Frecuencia del Sistema = 60 Hz
- \(RMG \) : Radio efectivo del conductor.
- \(RMG = 0,7263*r \) para 07 alambres,
- \(RMG = 0,7580*r \) para 19 alambres.

Siendo \(r \) el radio exterior del conductor en mm.
- \(DMG \) : Distancia Media Geométrica, que depende de la configuración de los conductores del sistema.

b. **Cálculo de la resistencia.**

La resistencia de los conductores se calculará a la temperatura de operación, mediante la siguiente fórmula:

\[
R_{LT} = R_{20} \ [1 + \alpha (T - 20^\circ)] \ \text{ohm/km}
\]

Donde:

- \(R_{LT} \) : Resistencia de operación del conductor.
- \(R_{20} \) : Resistencia del conductor en c.c. a 20°C, en ohm/km.
- \(T \) : Temperatura de operación del conductor.
- \(\alpha \) : Factor que depende del tipo de material.
Para $\alpha = 25^\circ C$

$\alpha : 0,00396$ Para aluminio y ACSR.

c. **Cálculo de la impedancia de secuencia homopolar.**

Para el cálculo de este parámetro se emplearán las fórmulas de Carson, el cual considera la ubicación del conductor ficticio bajo tierra: (De).

$$ De = 658 \sqrt{\frac{\rho}{f}} \ m $$

Dónde:

- De : Profundidad de retorno equivalente (m).
- ρ : Resistividad del terreno (Ω-m).
- f : Frecuencia del sistema (Hz).

c.1) **Impedancia homopolar propia de los conductores (Z_{01}).**

$$ Z_{01} = R_c + 0,002964 f + j 0,008676 f \ log\left(\frac{De}{RMG_1}\right) $$

de:

$$ RMG_1 = 3 \sqrt{\frac{r (DMG_{abc})}{2}} $$

DMG_{abc} : Distancia media de los conductores (mm).

r : Radio medio geométrico de cada conductor.

c.2) **Impedancia homopolar propia de los cables de guarda.**

$$ Z_{0g} = 3 R_g + 13,084 + j 0,008676 f \ log\left(\frac{De}{RMG_g}\right) $$

Dónde:
\[RMG_g = 3 \sqrt{\frac{r_g (DMG_g)^2}{}} \]

RMG\(_g\): Radio medio geométrico del cable de guarda.

R\(_g\): Resistencia del cable de guarda.

c.3) **Impedancia homopolar mutua entre conductores y cable de guarda.**

\[Z_{0(m)} = 0,002964 f + j 0,008676 f \log \left(\frac{De}{RMG_{1g}} \right) \]

Dónde:

\[DMG_{1g} = 3 \sqrt{d_{ag} d_{bg} d_{cg}} \]

DMG\(_{1g}\): Distancia media de los conductores y el cable de guarda.

c.4) **Impedancia de secuencia homopolar de la línea de transmisión.**

Finalmente se tiene:

\[Z_{00} = Z_{01} - \left(\frac{Z_{0(m)}}{Z_{0g}} \right)^2 \]

Los parámetros eléctricos de los diferentes componentes del sistema como son: transformadores de dos y tres devanados, las líneas de sub-transmisión, banco de condensadores, etc se muestran en detalle en los respectivos anexos.

✓ **Generadores.**

A falta de información las reactancias de los generadores se determinaron de la forma siguiente:

a) **Reactancia subprocessitoria (X”d):**
\[X''_d = \frac{X''_d V_n^2}{100 N_G} \] \(\Omega / fase \)

Dónde:

- \(N_G \): Potencia nominal del generador.
- \(V_n \): Tensión nominal del generador, en kV.
- \(X''_d \): Reactancia subtransitoria de los generadores.

b) Resistencia del generador:

\[R_G = 0,05 X''_d \text{ para: } N > 100 \text{ MVA.} \]

\[R_G = 0,07 X''_d \text{ para: } N < 100 \text{ MVA.} \]

2.2.3. CÁLCULO DE CORTOCIRCUITO EN EL SISTEMA.

Las corrientes que fluyen en las diferentes partes del sistema de potencia durante una falla (cortocircuito), difieren considerablemente de las corrientes que pueden fluir bajo condiciones de operación normal. Los cálculos de cortocircuito consistirán en determinar éstas corrientes para diferentes tipos de fallas en puntos del sistema en estudio.

Para determinar el comportamiento del sistema eléctrico en estudio durante la ocurrencia del cortocircuito se calcularon empleando programas de cálculos de fallas para P.C. Los resultados de la simulación de los cálculos de cortocircuito han sido realizados tomando en cuenta la configuración del Sistema Eléctrico Interconectado para las condiciones de máxima y mínima demanda. Los cálculos de corto circuito se han efectuado en el Digsilent Power Factory V.14.1., simulando fallas monofásicas, bifásicas y trifásicas en la zona de estudio.
La finalidad de realizar un estudio adecuado de los cálculos de fallas mediante el cortocircuito es determinar el comportamiento del sistema eléctrico de la Subestación. El objetivo de un estudio de cortocircuito será derivar y justificar los métodos sistemáticos para obtener las respuestas (corrientes y voltajes) de régimen sinusoidal permanente que se presentan en un sistema eléctrico de potencia trifásico, balanceado y simétrico cuando en una localización geográfica de éste (identificada mediante la letra P) se introduce un fallo paralelo (desequilibrio), cuyo diagrama general se muestra en la figura, donde se han designado y definido los *sentidos de referencia* (interpretación para los valores positivos) *para las corrientes y voltajes en el punto de fallo*.

![Diagrama de un circuito con una falla paralela general.](image)

PROCEDIMIENTO GENERAL.

El procedimiento para calcular las respuestas (corrientes y voltajes) que se presentan en el estado estacionario en un sistema eléctrico de potencia cuando en un punto P se introduce un desbalance (fallo) paralelo consta de las siguientes etapas:

a) Se halla un equivalente de Thévenin del circuito de prefallo entre el punto P y el de referencia como se muestra en la Figura 2.10.
Figura Nº 2.10. Equivalente Thevenin del circuito de pre-falla con admitancia de falla.

b) Se obtiene la matriz admitancia de falla $Y_F^{a,b,c}$ y se conecta ésta al equivalente de Thévenin obtenido en la etapa anterior.

c) Se obtiene la corriente total a través de la falla $\tilde{I}_{P(F)}$ y el voltaje en el punto de falla $\tilde{V}_{P(F)}$.

d) Se reemplaza el fallo por una fuente de corriente de valor $\tilde{I}_{P(F)}$ (teorema de sustitución) y se resuelve el circuito resultante.

COMPONENTES SIMÉTRICAS.

Se ha visto que si en un sistema trifásico, que opera bajo condiciones de equilibrio y simetría, se introduce un fallo paralelo, tanto las corrientes a través de las tres fases de cada elemento trifásico como los voltajes de nodo de cada una de las fases en todas partes en el estado estacionario, en general tienen magnitudes y ángulos de fase diferentes. Es decir, los 3 fasores están desbalanceados. El conjunto se puede expresar como la suma de tres conjuntos balanceados. Matemáticamente:

$$
\begin{bmatrix}
V^a \\
V^b \\
V^c
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
V^{a0} \\
V^{a1} \\
V^{a2}
\end{bmatrix}
$$
Cuando se aplican las componentes simétricas en estudios de cortocircuito en sistemas trifásicos desaparecen las fems de los generadores en las redes de secuencia cero y negativa ya que su valor es nulo, lo cual se puede verificar fácilmente multiplicando la inversa de cualquiera de dichas matrices por cualquiera de los conjuntos de secuencia positiva.

Una de las ventajas fundamentales de las componentes simétricas es la facilidad para determinar experimentalmente las impedancias de secuencia de cualquier elemento trifásico. Así, por ejemplo, aplicando voltajes balanceados a las tres fases de un sistema de transmisión en el envío P y uniendo los conductores en la llegada Q, como se muestra en la Figura 2.1, se obtiene una relación entre la caída de tensión y la corriente a través de cada fase, que depende de la secuencia de los voltajes aplicados.

\[
\begin{bmatrix}
V^a \\
V^b \\
V^c
\end{bmatrix} = \frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
V^a \\
V^b \\
V^c
\end{bmatrix}
\]

Figura N° 2.11. Determinación experimental de las impedancias de secuencia de un sistema de transmisión.
En las siguientes figuras se muestran los equivalentes thevenin de las redes de secuencia positiva, negativa y cero.

Figura Nº 2.12. Equivalente thevenin de la red de secuencia positiva.

Figura Nº 2.13. Equivalente thevenin de la red de secuencia negativa.

Figura Nº 2.14. Equivalente thevenin de la red de secuencia cero.
CAPÍTULO II
ANÁLISIS DEL SISTEMA ELÉCTRICO

2.1. ANÁLISIS DEL FLUJO DE POTENCIA.

El cálculo del flujo de potencia consiste en evaluar el punto de operación en estado estacionario de un sistema eléctrico para condiciones de generación, carga y su respectiva configuración.

Los objetivos principales al resolver un flujo de potencia son:

d. Demostrar, mediante el análisis de operación en estado estacionario, que la conexión al SEIN de las instalaciones del proyecto no tendrán un efecto negativo sobre las condiciones de operación del sistema eléctrico de transmisión.

e. Conocer los valores de los perfiles de tensión, nivel de carga de las líneas de transmisión y nivel de carga de los transformadores de potencia, cuando se implemente el proyecto.

f. Determinar los valores de corrientes de falla trifásica, monofásica y bifásica a tierra, así como realizar el análisis de las corrientes de interrupción de los equipos a ser instalados y evaluar la capacidad de los transformadores de corriente asociados al presente proyecto.
2.1.1. MODELO DE LOS ELEMENTOS DE UN SISTEMA ELÉCTRICO DE POTENCIA.

Líneas de transmisión.

Una línea de transmisión conectada a las barras i-k de un sistema de energía eléctrica se puede representar por el modelo equivalente π, mostrado en la figura Nº 2.1 y definido por las características físicas de la línea: la conductancia serie G_{ik}, la susceptancia serie B_{ik} y la mitad de la susceptancia shunt (conectado a tierra) B'_{ik}.

La admitancia serie Y_{ik} está definida por:

$$Y_{ik} = G_{ik} + jB_{ik}$$

![Fig. Nº 2.1: Modelo π de una línea de transmisión.](image)

$$Z_{ik} = R_{ik} + jX_{ik} \quad \quad \quad \quad \quad Y_{ik} = \frac{1}{Z_{ik}}$$

Transformadores.

a) Transformadores de dos devanados:

Podemos representarlo de la siguiente manera:

![Fig. Nº 2.2: Modelo de un transformador de dos devanados](image)
Donde:

X: Reactancia en p.u. de los devanados primario y secundario visto desde el lado secundario en %.

a: Relación de transformación en p.u. visto del lado primario en p.u.

\[
X = V_{cc} \cdot \frac{N_n}{N_b} \left(\frac{V_s}{V_{bs}} \right)^2 \%
\]

\[
a = \frac{t_p}{t_s} \cdot \frac{V_p}{V_s} \cdot \frac{V_{bs}}{V_{bp}} \text{ p.u.}
\]

Donde:

Vcc : Tensión de cortocircuito en base Nn en %.

Vp : Tensión nominal en el lado primario en kV.

Vs : Tensión nominal en el lado secundario en kV.

Vbp : Tensión base en el lado primario en kV.

Vbs : Tensión base en el lado secundario en kV.

Nn : Potencia de base en el cual se ha medido la tensión de cortocircuito.

Habitualmente es el nominal en MVA.

Nb : Potencia escogida como base en MVA.

Tp : Posición del Tap del lado primario referido a la tensión nominal primaria del transformador en p.u.

Ts : Posición del Tap del lado secundario referido a la tensión nominal secundaria del transformador en p.u.

b) Transformadores de tres devanados:

Calculando previamente las siguientes relaciones:

\[
\sum Z = Z_{ps} + Z_{pt} + Z_{st}
\]
$Z_{ps} = V_{CC_{ps}} \frac{Nb}{Nb_{ps}} \quad \quad \quad Z_{pt} = V_{CC_{pt}} \frac{Nb}{Nb_{pt}}$

$Z_{st} = V_{CC_{st}} \frac{Nb}{Nb_{st}}$

Su modelo se representa de la siguiente manera:

![Diagrama del transformador de tres devanados](image)

Fig. N° 2.3: Modelo de un transformador de tres devanados

Entonces se tiene:

$Z_p = \frac{1}{2} \sum Z - Z_{st} \quad \quad \quad Z_s = \frac{1}{2} \sum Z - Z_{pt}$

$Z_t = \frac{1}{2} \sum Z - Z_{ps}$

$a_p = \frac{V_p}{V_{bp}} \quad \quad a_s = \frac{V_s}{V_{bs}} \quad \quad a_t = \frac{V_t}{V_{bt}}$

Donde:

V_p : Tensión nominal en el lado primario en kV .

V_s : Tensión nominal en el lado secundario en kV .

V_t : Tensión nominal en el lado terciario en kV .

V_{bp} : Tensión de base en el lado primario en kV .

V_{bs} : Tensión de base en el lado secundario en kV .

V_{bt} : Tensión de base en el lado terciario en kV .
Vccps : Tensión de cortocircuito entre los devanados primario y secundario con el terciario abierto expresado en la potencia de base Nbps en %.

Vccpt : Tensión de cortocircuito entre los devanados primario y terciario con el secundario abierto expresado en la potencia de base Nbpt en %.

Vccst : Tensión de cortocircuito entre los devanados secundario y terciario con el primario abierto expresado en la potencia de base Nbst en %.

Nb : Potencia escogida como base en MVA.

Nbps : Potencia base en que se expresa la tensión de cortocircuito entre los devanados primario y secundario en MVA.

Nbpt : Potencia base en que se expresa la tensión de cortocircuito entre los devanados primario y terciario en MVA.

Nbst : Potencia base en que se expresa la tensión de cortocircuito entre los devanados secundario y terciario en MVA.

Zp : Impedancia representativa del devanado primario expresado en bases de la potencia Nb y la tensión Vbp en %.

Zs : Impedancia representativa del devanado secundario expresado en bases de la potencia Nb y la tensión Vbs en %.

Zt : Impedancia representativa del devanado terciario expresado en bases de la potencia Nb y la tensión Vbt en %.

2.1.2. FORMA GENERAL DE ECUACIONES.

En general el flujo de carga se puede formular:

\[\overline{Y} \overline{V} = \overline{I} \] \[1 \]

\[\overline{S}_i = \overline{V}_i.\overline{I}_i^* \] \[2 \]
\[\bar{I}_i = \frac{\bar{S}_i^*}{\bar{V}_i} = \frac{P_i - jQ_i}{\bar{V}_i} \]
\[[\bar{I}_1] = \begin{bmatrix} \bar{Y}_{11} & \bar{Y}_{12} & \cdots & \bar{Y}_{1u} & \cdots & \bar{Y}_{1n} \end{bmatrix} \begin{bmatrix} \bar{V}_1 \end{bmatrix} \]
\[[\bar{I}_2] = \begin{bmatrix} \bar{Y}_{21} & \bar{Y}_{22} & \cdots & \bar{Y}_{2u} & \cdots & \bar{Y}_{2n} \end{bmatrix} \begin{bmatrix} \bar{V}_2 \end{bmatrix} \]
\[\vdots \]
\[[\bar{I}_i] = \begin{bmatrix} \bar{Y}_{ii} & \bar{Y}_{i2} & \cdots & \bar{Y}_{iu} & \cdots & \bar{Y}_{in} \end{bmatrix} \begin{bmatrix} \bar{V}_i \end{bmatrix} \]
\[\vdots \]
\[[\bar{I}_n] = \begin{bmatrix} \bar{Y}_{n1} & \bar{Y}_{n2} & \cdots & \bar{Y}_{nu} & \cdots & \bar{Y}_{nn} \end{bmatrix} \begin{bmatrix} \bar{V}_n \end{bmatrix} \]

\[\bar{I}_i = \bar{Y}_{i1}\bar{V}_1 + \bar{Y}_{i2}\bar{V}_2 + \ldots + \bar{Y}_{ii}\bar{V}_i + \ldots + \bar{Y}_{in}\bar{V}_n \]

\[\bar{I}_i = \sum_{k=1}^{n} \bar{Y}_{ik}\bar{V}_k \] \hspace{1cm} \text{Para } (i = 1, 2, \ldots, n) \hspace{1cm} [5]

\[\frac{P_i - jQ_i}{\bar{V}_i^*} = \sum_{k=1}^{n} \bar{Y}_{ik}\bar{V}_k \] \hspace{1cm} [6]

\[P_i - jQ_i = \bar{V}_i^* \sum_{k=1}^{n} \bar{Y}_{ik}\bar{V}_k \] \hspace{1cm} [7]

\[\bar{S}_i^* = \bar{V}_i^* \sum_{k=1}^{n} \bar{Y}_{ik}\bar{V}_k \]

\[\bar{S}_i = \bar{V}_i \sum_{k=1}^{n} \bar{Y}_{ik}^* \bar{V}_k^* \] \hspace{1cm} [8]

\[\bar{S}_i = ||\bar{V}_i^*|| \sum_{k=1}^{n} (G_{ik} + jB_{ik})^* ||\bar{V}_k|| \theta_k \]

\[\bar{S}_i = ||\bar{V}_i|| \sum_{k=1}^{n} (G_{ik} + jB_{ik})^* ||\bar{V}_k|| \theta_i - \theta_k \] \hspace{1cm} [9]
Donde \(\theta_{ik} \) es la diferencia angular de la línea i-k dada por:

\[
\theta_{ik} = \theta_i - \theta_k
\]

\[
\bar{S}_i = |V_i| \sum_{k=1}^{n} \left(G_{ik} - jB_{ik} \right) |V_k| \left\{ \cos(\theta_i - \theta_k) + j \sin(\theta_i - \theta_k) \right\}
\]

\[
\bar{S}_i = |V_i| \sum_{k=1}^{n} |V_k| \left\{ (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) + j (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) \right\}
\]

También se puede expresar de la siguiente manera:

\[
P_i = |V_i| \sum_{k=1}^{n} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right)
\]

\[
Q_i = |V_i| \sum_{k=1}^{n} |V_k| \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right)
\]

Esto es una ecuación de balance de potencia que indica cómo la potencia inyectada en un nodo es igual a la suma de todos los flujos de potencia que salen de ese nodo. Así, la expresión resultante es:

\[
P_i = G_{ii} |V_i|^2 + |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right)
\]

Donde \(G_{ii} \) está definido por:

\[
G_{ii} = \sum_{k=1 \atop k \neq i}^{N} (-G_{ik})
\]

Del mismo modo para la inyección neta de potencia reactiva.

\[
Q_i = -B_{ii} |V_i|^2 + |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right)
\]

Donde \(B_{ii} \) está definido por:

\[
B_{ii} = \sum_{k=1 \atop k \neq i}^{N} \left(B^*_{ik} - B_{ik} \right)
\]
2.1.3. FORMULACIÓN DE LAS ECUACIONES POR EL MÉTODO DE GAUSS-SEIDEL.

Para resolver un sistema de potencia por el método de Gauss Seidel se deben suponer los valores iniciales de los voltajes (tanto en magnitud como en ángulo) de cada barra del sistema.

Por facilidad se acostumbra suponer el vector de voltajes iniciales de la siguiente manera:

- En las barras PQ se supone la magnitud unitaria (en p.u.) y el ángulo cero.
- En las barras PV se coloca la magnitud de voltaje dada (conocida) y el ángulo cero.
- En la barra de referencia (Slack) se coloca el voltaje de referencia y el ángulo de referencia que generalmente es cero grados.

\[\frac{\bar{S}_{i}^*}{\bar{V}_i} = \sum_{k=1}^{n} \bar{Y}_{ik} \bar{V}_k \]

De la ecuación: \[15\]

Si el nodo slack lo suponemos como último nodo, entonces la ecuación \[15\] se puede escribir:

\[\frac{\bar{S}_{i}^*}{\bar{V}_i} = \sum_{k=1}^{n-1} \bar{Y}_{ik} \bar{V}_k + \bar{Y}_{in} \bar{V}_n \]

Donde el término \(\bar{Y}_{in} \bar{V}_n \) se refiere al nodo slack, es conocido y constante.

Entonces tenemos:

\[\frac{\bar{S}_{i}^*}{\bar{V}_i} = \sum_{k=1}^{i-1} \bar{Y}_{ik} \bar{V}_k + \bar{Y}_{ii} \bar{V}_i + \sum_{k=i+1}^{n-1} \bar{Y}_{ik} \bar{V}_k + \bar{Y}_{in} \bar{V}_n \]
Si “m” es el número de iteración, entonces se puede escribir:

\[
\bar{V}_{i(m)} = \frac{1}{\bar{Y}_{ii}} \left[\frac{\bar{S}_i}{\bar{V}_i} - \bar{Y}_{in} \bar{V}_n - \sum_{k=1}^{i-1} \bar{Y}_{ik} \bar{V}_k - \sum_{k=i+1}^{n-1} \bar{Y}_{ik} \bar{V}_k \right] \quad \text{[17]}
\]

Se itera hasta que los valores de \(\bar{V}_i \) y de \(\bar{\theta}_i \) converjan a un valor o dicho de otra manera cuando:

\[
|\bar{\theta}_{i(m)} - \bar{\theta}_{i(m+1)}| < \varepsilon_1
\]

\[
|\bar{V}_{i(m)} - \bar{V}_{i(m+1)}| < \varepsilon_2
\]

Para \(i = 1, 2, \ldots \) NB (NB: Número de barras de la red)

Generalmente el algoritmo (\(\varepsilon \)) es del orden de \(10^{-3} \).

2.1.4. FORMULACIÓN DE LAS ECUACIONES POR EL MÉTODO DE NEWTON – RAPHSON.

Para solucionar el problema de flujo de potencia, se procede:

\[
F(x) = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} P_{sp} - P_{calc} \\ Q_{sp} - Q_{calc} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{[18]}
\]

Donde:

sp: especificado calc: calculado

\[P_{\text{calc}(i)} = G_{ii} |V_i|^2 + |V_i| \sum_{k=1, k \neq i}^{N} V_k (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) \]

\[Q_{\text{calc}(i)} = -B_{ii} |V_i|^2 + |V_i| \sum_{k=1, k \neq i}^{N} V_k (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) \]

Por lo tanto, los incrementos de potencia activa y reactiva en cada nodo del sistema serán:

\[\Delta P_i = P_{sp(i)} - G_{ii} |V_i|^2 - |V_i| \sum_{k=1, k \neq i}^{N} V_k (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = 0 \] \[19 \]

\[\Delta Q_i = Q_{sp(i)} + B_{ii} |V_i|^2 - |V_i| \sum_{k=1, k \neq i}^{N} V_k (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = 0 \] \[20 \]

Para el flujo de carga se tiene:

\[X = \begin{bmatrix} \theta \\ V \end{bmatrix} \quad \text{Vector de estado} \]

\[H = \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} \quad \text{Vector de correcciones de X} \]

Por lo tanto la matriz jacobiana será de la siguiente manera:

Cuando las barras son PQ, el sistema presenta “2n-1” incógnitas, puesto que en el nodo slack se conocen V y \theta. El número de incógnitas disminuye también en igual proporción que el número de barras PV con que cuenta la red. Es decir:
Por facilidad en el cálculo del jacobiano es conveniente multiplicar las submatrices N y L por V, y dividir el vector de corrientes de voltaje ΔV por V también para que no se altere la ecuación F(x) = -J.H, tal como se muestra en la ecuación:

\[
\begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix} = - \begin{bmatrix}
\frac{\partial \Delta P}{\partial \theta} & V \frac{\partial \Delta P}{\partial V} \\
\frac{\partial \Delta Q}{\partial \theta} & V \frac{\partial \Delta Q}{\partial V}
\end{bmatrix} \begin{bmatrix}
\Delta \theta \\
\Delta V
\end{bmatrix}
\]

Los términos del jacobiano se obtienen derivando las funciones ΔP y ΔQ con respecto a θ y V respectivamente, tal como se indica:

Elemento de la diagonal principal:

\[
H_{ii} = \frac{\partial}{\partial \theta_i} \left[P_{sp(i)} - G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} V_k \left(G_{ik} \cos \theta_k + B_{ik} \sin \theta_k \right) \right]
\]

\[
H_{ii} = -|V_i| \sum_{k=1}^{N} V_k \left(- G_{ik} \sin \theta_k + B_{ik} \cos \theta_k \right)
\]
Teniendo en cuenta la ecuación [20] se tiene:

\[H_{ii} = Q_{sp(i)} + B_{ii} |V_i|^2 \] \[23 \]

Elementos fuera de la diagonal principal;

\[H_{ik} = \frac{\partial}{\partial \theta_k} \left[P_{sp(i)} - G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \right] \]

\[H_{ik} = -|V_i| |V_k| \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right) \] \[24 \]

Los otros elementos serán:

\[M_{ii} = \frac{\partial}{\partial \theta_i} \left[Q_{sp(i)} + B_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \sin \theta_{ik} + B_{ik} \cos \theta_{ik} \right) \right] \]

\[M_{ii} = -|V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \]

Teniendo en cuenta la ecuación [19] se tiene:

\[M_{ii} = -P_{sp(i)} + G_{ii} |V_i|^2 \] \[25 \]

Fuera de la diagonal principal;

\[M_{ik} = \frac{\partial \Delta Q_i}{\partial \theta_k} = |V_i| |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \] \[26 \]

\[N_{ii} = |V_i| \frac{\partial}{\partial V_i} \left[P_{sp(i)} - G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \right] \]

\[N_{ii} = -2G_{ii} |V_i|^2 - |V_i| \sum_{k=1}^{N} |V_k| \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \]

\[N_{ii} = -P_{sp(i)} - G_{ii} |V_i|^2 \] \[27 \]
\[N_{ik} = |V_k| \frac{\partial \Delta P_i}{\partial V_i} = -|V_i| |V_k|(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) \]

\[L_{ii} = |V_i| \frac{\partial \Delta Q_i}{\partial V_i} = -Q_{sp(i)} + B_{ii} |V_i|^2 \]

\[L_{ik} = |V_k| \frac{\partial \Delta Q_i}{\partial V_k} = -|V_i| |V_k|(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) \]

El flujo de potencia del sistema eléctrico se realizó en el programa computacional de DigSilent Power Factory V14.0.

2.2. ANÁLISIS DE CORTOCIRCUITO.

Este fenómeno representa la más severa a la que pueda verse sometida una instalación eléctrica ya que en su manifestación más acentuada produce efectos térmicos y dinámicos que en ocasiones se presentan con tal violencia que pueden provocar la destrucción mecánica de las máquinas e inclusive de los materiales.

2.2.1. CARACTERÍSTICAS DEL CORTOCIRCUITO.

Los cortocircuitos pueden ser:

- **Monofásicos**: 80% de los casos.
- **Bifásicos**: 15% de los casos. Los de este tipo, suelen degenerar en trifásicos.
- **Trifásicos**: Sólo el 5% de los casos.

![Diagrama de cortocircuitos trifásicos y entre fases, aislado](image)
2.2.2. PARÁMETROS DEL SISTEMA PARA LOS CÁLCULOS DE CORTOCIRCUITO.

✓ Transformadores de dos devanados.

Sobre la base de las características nominales del transformador, los parámetros serán calculados de la siguiente manera:

\[
X_{(+)} = X_{pu} \left(\frac{N_{B Nueva}}{N_{B Original}} \right) \left(\frac{V_{B Original}}{V_{B Nueva}} \right)^2 \quad \text{p.u.}
\]

\[
X_{(-)} = X_{(+)} \quad \text{y}
\]

\[
X_{(0)} = 0.85 \times X_{(+)}
\]

Dónde:

- \(X_{pu}\): Tensión de cortocircuito en P.U.
- \(X_{(+)}\): Reactancia de secuencia positiva.
- \(X_{(-)}\): Reactancia de secuencia negativa.
X(0) : Reactancia de secuencia cero.

Transformadores de tres devanados

Los transformadores de tres devanados están conformados básicamente por tres transformadores monofásicos. Sobre la base de las características nominales del transformador, los parámetros serán calculados de la siguiente manera:

Figura Nº 2.6. Unifilar de un transformador de tres devanados.

Figura Nº 2.7. Transformaciones triángulo - estrella.
Figura Nº 2.8. Representación de los transformadores de tres devanados.

\[
\begin{align*}
Z_1 &= \frac{1}{2} [Z_{PS} + Z_{PT} - Z_{ST}] \\
Z_2 &= \frac{1}{2} [Z_{ST} + Z_{PS} - Z_{ST}] \\
Z_3 &= \frac{1}{2} [Z_{PT} + Z_{ST} - Z_{PS}]
\end{align*}
\]

\[X_+ = X_{pu} \left(\frac{N_{B Nueva}}{N_{B Original}} \right) \left(\frac{V_{B Original}}{V_{B Nueva}} \right)^2 \text{ p.u.}\]

\[X_- = X_+ \quad \text{y} \quad X_0 = 0.85 \times X_+
\]

Dónde:

- \(X_{pu}\) : Tensión de cortocircuito en P.U.
- \(X_+\) : Reactancia de secuencia positiva.
- \(X_-\) : Reactancia de secuencia negativa.
- \(X_0\) : Reactancia de secuencia cero.

✓ **Líneas de transmisión.**

La impedancia de secuencia positiva es la impedancia normal de una línea de transmisión. Existen varios libros especializados en métodos de obtención de la impedancia de líneas de transmisión.
En la práctica los parámetros de las líneas de transmisión son calculados teniendo en consideración las características de los conductores y sus respectivas disposiciones en las estructuras de transmisión.

a. **Cálculo de la reactancia inductiva por fase.**

\[X_L = 2 \pi f \left(0,5 + 4,606 \log \frac{DMG}{RMG} \right) \times 10^{-4} \ \Omega / km \]

\[X_L = 0,17364 \log \frac{DMG}{RMG} \ \Omega / km \]

Donde:

- \(f \) : Frecuencia del Sistema = 60 Hz
- \(RMG \) : Radio efectivo del conductor.
- \(RMG = 0,7263*r \) para 07 alambres,
- \(RMG = 0,7580*r \) para 19 alambres.

 Siendo \(r \) el radio exterior del conductor en mm.
- \(DMG \) : Distancia Media Geométrica, que depende de la configuración de los conductores del sistema.

b. **Cálculo de la resistencia.**

La resistencia de los conductores se calculará a la temperatura de operación, mediante la siguiente fórmula:

\[R_{LT} = R_{20} \left[1 + \alpha (T - 20^\circ) \right] \ \Omega/km \]

Donde:

- \(R_{LT} \) : Resistencia de operación del conductor.
- \(R_{20} \) : Resistencia del conductor en c.c. a 20°C, en ohm/km.
- \(T \) : Temperatura de operación del conductor.
- \(\alpha \) : Factor que depende del tipo de material.
Para $\alpha = 25^\circ$C

$\alpha : 0,00396$ Para aluminio y ACSR.

c. Cálculo de la impedancia de secuencia homopolar.

Para el cálculo de este parámetro se emplearán las fórmulas de Carson, el cual considera la ubicación del conductor ficticio bajo tierra: (De).

$$De = 658 \sqrt{\frac{\rho}{f}} \text{m}$$

Dónde:

$De :$ Profundidad de retorno equivalente (m).

$\rho :$ Resistividad del terreno (Ω-m).

$f :$ Frecuencia del sistema (Hz).

c.1) Impedancia homopolar propia de los conductores (Z_{01}).

$$Z_{01} = R_c + 0,002964f + j \times 0,008676f \log \left(\frac{De}{RMG_1} \right)$$

de:

$$RMG_1 = 3 \sqrt[r]{(DMG_{abc})^2}$$

$DMG_{abc} :$ Distancia media de los conductores (mm).

$r :$ Radio medio geométrico de cada conductor.

c.2) Impedancia homopolar propia de los cables de guarda.

$$Z_{0g} = 3 R_s + 13,084 + j \times 0,008676f \log \left(\frac{De}{RMG_g} \right)$$

:Dónde
\[\text{RMG}_g = \sqrt[3]{ \frac{r_g}{(DMG_g)^2}} \]

RMG\(_g\) : Radio medio geométrico del cable de guarda.

R\(_g\) : Resistencia del cable de guarda.

c.3) **Impedancia homopolar mutua entre conductores y cable de guarda.**

\[Z_0(m) = 0.002964f + j 0.008676f \log \left(\frac{D_e}{\text{RMG}_{1g}} \right) \]

Dónde:

\[\text{DMG}_{1g} = \sqrt[3]{d_{ag} d_{bg} d_{cg}} \]

DMG\(_{1g}\) : Distancia media de los conductores y el cable de guarda.

c.4) **Impedancia de secuencia homopolar de la línea de transmisión.**

Finalmente se tiene:

\[Z_{00} = Z_{01} - \left(\frac{Z_{0(m)}}{Z_{0g}} \right)^2 \]

Los parámetros eléctricos de los diferentes componentes del sistema como son: transformadores de dos y tres devanados, las líneas de sub-transmisión, banco de condensadores, etc se muestran en detalle en los respectivos anexos.

✓ **Generadores.**

A falta de información las reactancias de los generadores se determinaron de la forma siguiente:

a) **Reactancia subtransitoria (X”d):**
Dónde:

- N_G: Potencia nominal del generador.
- V_n: Tensión nominal del generador, en kV.
- X''_d: Reactancia subtransitoria de los generadores.

b) **Resistencia del generador:**

- $R_G = 0.05 \times X''_d$ para: $N > 100$ MVA.
- $R_G = 0.07 \times X''_d$ para: $N < 100$ MVA.

2.2.3. CÁLCULO DE CORTOCIRCUITO EN EL SISTEMA.

Las corrientes que fluyen en las diferentes partes del sistema de potencia durante una falla (cortocircuito), difieren considerablemente de las corrientes que pueden fluir bajo condiciones de operación normal. Los cálculos de cortocircuito consistirán en determinar éstas corrientes para diferentes tipos de fallas en puntos del sistema en estudio.

Para determinar el comportamiento del sistema eléctrico en estudio durante la ocurrencia del cortocircuito se calcularon empleando programas de cálculos de fallas para P.C. Los resultados de la simulación de los cálculos de cortocircuito han sido realizados tomando en cuenta la configuración del Sistema Eléctrico Interconectado para las condiciones de máxima y mínima demanda. Los cálculos de corto circuito se han efectuado en el Digsilent Power Factory V.14.1., simulando fallas monofásicas, bifásicas y trifásicas en la zona de estudio.
La finalidad de realizar un estudio adecuado de los cálculos de fallas mediante el cortocircuito es determinar el comportamiento del sistema eléctrico de la Subestación. El objetivo de un estudio de cortocircuito será derivar y justificar los métodos sistemáticos para obtener las respuestas (corrientes y voltajes) de régimen sinusoidal permanente que se presentan en un sistema eléctrico de potencia trifásico, balanceado y simétrico cuando en una localización geográfica de éste (identificada mediante la letra P) se introduce un fallo paralelo (desequilibrio), cuyo diagrama general se muestra en la figura, donde se han designado y definido los *sentidos de referencia* (interpretación para los valores positivos) para las corrientes y voltajes en el punto de fallo.

Figura Nº 2.9. Diagrama de un circuito con una falla paralela general.

PROCEDIMIENTO GENERAL.

El procedimiento para calcular las respuestas (corrientes y voltajes) que se presentan en el estado estacionario en un sistema eléctrico de potencia cuando en un punto P se introduce un desbalance (fallo) paralelo consta de las siguientes etapas:

b) Se halla un equivalente de Thévenin del circuito de prefallo entre el punto P y el de referencia como se muestra en la Figura 2.10.
Figura N° 2.10. Equivalent Thevenin del circuito de pre-falla con admitancia de falla.

b) Se obtiene la matriz admitancia de falla $Y_{F}^{a,b,c}$ y se conecta ésta al equivalente de Thévenin obtenido en la etapa anterior.

c) Se obtiene la corriente total a través de la falla $I_{P(F)}^{a,b,c}$ y el voltaje en el punto de falla $V_{P(F)}^{a,b,c}$.

d) Se reemplaza el fallo por una fuente de corriente de valor $I_{P(F)}^{a,b,c}$ (teorema de sustitución) y se resuelve el circuito resultante.

COMPONENTES SIMÉTRICAS.

Se ha visto que si en un sistema trifásico, que opera bajo condiciones de equilibrio y simetría, se introduce un fallo paralelo, tanto las corrientes a través de las tres fases de cada elemento trifásico como los voltajes de nodo de cada una de las fases en todas partes en el estado estacionario, en general tienen magnitudes y ángulos de fase diferentes. Es decir, los 3 fasores están desbalanceados. El conjunto se puede expresar como la suma de tres conjuntos balanceados. Matemáticamente:

$$
\begin{bmatrix}
V_a \\
V_b \\
V_c
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
V^{a0} \\
V^{a1} \\
V^{a2}
\end{bmatrix}
$$
Cuando se aplican las componentes simétricas en estudios de cortocircuito en sistemas trifásicos desaparecen las fems de los generadores en las redes de secuencia cero y negativa ya que su valor es nulo, lo cual se puede verificar fácilmente multiplicando la inversa de cualquiera de dichas matrices por cualquiera de los conjuntos de secuencia positiva.

Una de las ventajas fundamentales de las componentes simétricas es la facilidad para determinar experimentalmente las impedancias de secuencia de cualquier elemento trifásico. Así, por ejemplo, aplicando voltajes balanceados a las tres fases de un sistema de transmisión en el envío P y uniendo los conductores en la llegada Q, como se muestra en la Figura 2.11, se obtiene una relación entre la caída de tensión y la corriente a través de cada fase, que depende de la secuencia de los voltajes aplicados.

![Figura 2.11](image-url)
En las siguientes figuras se muestran los equivalentes thevenin de las redes de secuencia positiva, negativa y cero.

Figura Nº 2.12. Equivalente thevenin de la red de secuencia positiva.

Figura Nº 2.13. Equivalente thevenin de la red de secuencia negativa.
CAPÍTULO IV
ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. ANÁLISIS Y RESULTADOS DE ESTABILIDAD TRANSITORIA.

Verificar la estabilidad transitoria que presenta la zona en estudio frente a eventos de fallas en las líneas de transmisión asociados al proyecto y las que se encuentran aledañas a dicho proyecto.

4.1.1 CRITERIOS.

Para este análisis se ha utilizado el programa de sistemas de potencia Power Factory DIgSILENT, realizando eventos de fallas con la inclusión del proyecto de Línea de Transmisión Carhuaquero – Cajamarca Norte – Cáclí – Moyobamba Nueva en 220 kV, considerado en los años 2016 y 2017; con
la finalidad de mostrar la respuesta de la operación del sistema ante los eventos de fallas realizados.

De acuerdo a los alcances presentados por el COES, las fallas simuladas son:

- **F1**: Cortocircuito Trifásico al 50% de la línea Trujillo Norte – Cajamarca Norte 220kV con apertura Trifásica y desconexión de la línea.

- **F2**: Cortocircuito Trifásico al 50% de la línea Chiclayo Oeste - Carhuaquero 220kV con apertura Trifásica y desconexión de la línea.

La secuencia de fallas será la siguiente:

Fallas trifásicas:

- \(t = 0.00 \) seg. – Falla trifásica franca en línea.

- \(t = 0.10 \) seg. – Apertura definitiva de la línea con falla y despeje de la falla trifásica.

Fallas monofásicas:

- \(t = 0.00 \) seg. – Falla monofásica franca en línea.

- \(t = 0.10 \) seg. – Apertura de la fase con falla fallada de la línea de transmisión.

- \(t = 0.15 \) seg. – Despeje de la falla monofásica.

- \(t = 0.60 \) seg. – Recierre de la fase liberada de la línea de transmisión.

Los eventos de fallas se han realizado en todos los escenarios de máxima demanda y en estiaje mínima demanda 2016, en la condición “considerando el proyecto”.
Las variables tomadas para observar las variaciones de las magnitudes son las siguientes:

- **Tensión en barra y ángulo del rotor con respecto al ángulo de la máquina de referencia de los generadores de Cañon del Pato G1 Carhuaquero G1, Caña Brava, Malacas G4, Quitaracsa G1 y Sam G1.**

- **Potencia activa transmitida por las líneas de transmisión; Línea Cácclic – Moyobamba Nueva, Línea Cajamarca Norte – Cácclic, Línea Cajamarca Norte – Carhuaquero, Línea Chiclayo Oeste – Carhuaquero, Línea Trujillo Norte Cajamarca y Línea Shahuindo – Cajamarca Norte.**

- **Tensiones en las barras de 220kV de las subestaciones Cácclic, Cajamarca Norte, Carhuaquero, Conococha, Guadalupe, Kiman Ayllu, Moyobamba Nueva y Trujillo Norte.**

4.1.2. ANÁLISIS DE LOS RESULTADOS.

A manera de ejemplos, se mostrarán los resultados gráficos de simulaciones para las fallas F1 y F2 en los escenarios de estiaje máxima demanda 2016, avenida máxima demanda 2017 Seguidamente se mostrará la tabla resumen de resultados para todos los escenarios analizados.

Los gráficos que contienen los resultados de las simulaciones de estabilidad transitoria completos se encuentran adjuntos en el Anexo Nº 4.

AÑO 2016.
a) Falla en la línea Trujillo Norte – Cajamarca Norte 220kV con apertura Trifásica y desconexión de la línea.

A continuación se muestra la simulación.
b) Falla en la línea Chiclayo Oeste - Carhuaquero 220kV con apertura Trifásica y desconexión de la línea.
AÑO 2017.

a) Falla en la línea Trujillo Norte – Cajamarca Norte 220kV con apertura Trifásica y desconexión de la línea.
b) Falla en la línea Chiclayo Oeste - Carhuaquero 220kV con apertura Trifásica y desconexión de la línea.
4.2. DISCUSIÓN DE RESULTADOS DE ESTABILIDAD TRANSITORIA.

En la Tabla N° 4.1 se muestra el resumen de resultados para el escenario estiaje máxima demanda 2016.

<table>
<thead>
<tr>
<th>EVENTO</th>
<th>DESCRIPCIÓN</th>
<th>ESCENARIO</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Cortocircuito trifásico en un extremo de la línea Trujillo Norte - Cajamarca Norte 220kV con apertura trifásica y desconexión de la línea</td>
<td>ESTIAJE MAXIMA</td>
<td>ESTABLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESTIAJE MINIMA</td>
<td>ESTABLE</td>
</tr>
<tr>
<td>F2</td>
<td>Cortocircuito trifásico en un extremo de la línea Chiclayo Oeste - Carhuáquero 220kV con apertura trifásica y desconexión de la línea</td>
<td>ESTIAJE MAXIMA</td>
<td>ESTABLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESTIAJE MINIMA</td>
<td>ESTABLE</td>
</tr>
</tbody>
</table>

Cuadro N° 4.1

En la Tabla N° 4.2 se muestra el resumen de resultados para el escenario estiaje máxima demanda 2017.

<table>
<thead>
<tr>
<th>EVENTO</th>
<th>DESCRIPCIÓN</th>
<th>ESCENARIO</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Cortocircuito trifásico en un extremo de la línea Trujillo Norte - Cajamarca Norte 220kV con apertura trifásica y desconexión de la línea</td>
<td>AVENIDA MAXIMA</td>
<td>ESTABLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AVENIDA MINIMA</td>
<td>ESTABLE</td>
</tr>
<tr>
<td>F2</td>
<td>Cortocircuito trifásico en un extremo de la línea Chiclayo Oeste - Carhuáquero 220kV con apertura trifásica y desconexión de la línea</td>
<td>AVENIDA MAXIMA</td>
<td>ESTABLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AVENIDA MINIMA</td>
<td>ESTABLE</td>
</tr>
</tbody>
</table>

Cuadro N° 4.2
4.3. ANALISIS Y RESULTADOS DEL FLUJO DE POTENCIA EN

ESTADO ESTACIONARIO.

4.3.1 CRITERIOS.

Para los escenarios de operación normal y en contingencias, se considera los siguientes criterios de operación:

a. Operación Normal:

- Las tensiones en barras deben estar dentro del rango ± 5 % de los equipos instalados en las subestaciones, principalmente transformadores de potencia.
- No se admiten sobrecargas ni en líneas ni en transformadores de potencia.

b. Operación en Contingencia:

- Se debe mantener un nivel de tensión comprendido entre 0.90 y 1.10 p.u. de la tensión de operación, en todas las barras con tensión nominal de 220 kV. Se debe mantener un nivel de tensión en el rango de 0.90 y 1.05 p.u. de la tensión de operación, en todas las barras con tensión igual o menor a 138 kV.
- En estado de alerta (Contingencia N-1) el nivel de carga en líneas y transformadores.

4.3.2. CONSIDERACIONES.

La tensión de la barra de 220 kV de la subestación Cajamarca Norte se encuentra regulada a 1.00 p.u., debido a la operación de compensadores estáticos de potencia reactiva (SVC) instalados en esta subestación. Se debe
verificar que luego del ingreso de las instalaciones que conforman el Proyecto, los SVC’s trabajen dentro de sus límites operativos.

4.3.3. METODOLOGÍA.

Debido que a mediados del mes de septiembre del año 2016, se tiene previsto realizar las pruebas experimentales de la línea de transmisión, se ha considerado como escenario base para los análisis, estiaje 2016 y avenida 2017.

El análisis se inicia reproduciendo la condición operativa de la zona en estudio, sin considerar las nuevas instalaciones, registrándose los niveles de flujo de potencia en las líneas de transmisión, transformadores, autotransformadores y perfiles de tensión de las barras presentes en la zona de influencia del Proyecto.

A continuación, se realizan simulaciones considerando las nuevas instalaciones, tanto en condiciones normales (N: red completa) como en contingencias simples (N-1).

4.3.4. ESCENARIOS DE ANÁLISIS.

Los escenarios considerados para el análisis son:

b. Año 2017 – Sin Proyecto: Año base de estudio. Se reproduce la
operación de la zona de influencia del Proyecto sin considerar las nuevas instalaciones. Se realizan las simulaciones para la máxima y mínima demanda del sistema eléctrico, para condiciones hidrológicas de avenida.

c. Año 2016 – Con Proyecto: Año de ingreso al SEIN de las instalaciones del Proyecto. Se realizan las simulaciones para la máxima y mínima demanda del sistema eléctrico, para condiciones hidrológicas de estiaje.

d. Año 2017 – Con Proyecto: Año de ingreso al SEIN de las instalaciones del Proyecto. Se realizan las simulaciones para la máxima y mínima demanda del sistema eléctrico, para condiciones hidrológicas de avenida.

4.3.5. ANÁLISIS DE OPERACIÓN NORMAL.

En las siguientes tablas se muestra un resumen de los resultados obtenidos en los escenarios de máxima demanda del sistema.
De los resultados se observa que cuando se produce el ingreso del nuevo proyecto, las sobrecargas presentes en las líneas de 138 kV del escenario sin proyecto, son eliminadas.

<table>
<thead>
<tr>
<th>Subestación</th>
<th>Pot. Nom.</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin proyecto</td>
<td>Con proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin proyecto</td>
<td>Con proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estiaje maxima demanda</td>
<td>Nivel de carga %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avenda maxima demanda</td>
<td>Nivel de carga %</td>
</tr>
<tr>
<td>TR3 TINGO MARIA 217.211</td>
<td>50</td>
<td>32.48 68.76 30.22 61.05</td>
<td>17.04 34.28 17.38 35.4</td>
</tr>
<tr>
<td>TR3 TINGO MARIA 217.171</td>
<td>50</td>
<td>30.91 62.6 28.76 58.11</td>
<td>16.19 33.03 16.5 33.41</td>
</tr>
<tr>
<td>TR3 CACLIC 220/138/23kV</td>
<td>60</td>
<td>- - 8.73 44.97</td>
<td>- - 8.52 44.07</td>
</tr>
<tr>
<td>TR3 MOYOBAMBA 220/183/29</td>
<td>100</td>
<td>- - 13.14 13.19</td>
<td>- - 17.72 18.01</td>
</tr>
</tbody>
</table>

Tabla Nº 4.4 Flujio de potencia de transformadores - Maxima demanda 2016-2017

El nivel de carga de los transformadores en las condiciones “sin considerar proyecto” y “considerando el proyecto” se encuentra dentro de los límites admisibles de operación.

<table>
<thead>
<tr>
<th>Barra</th>
<th>Tens. Nom.</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin proyecto</td>
<td>Con proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin proyecto</td>
<td>Con proyecto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estiaje maxima demanda</td>
<td>Nivel de carga %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avenda maxima demanda</td>
<td>Nivel de carga %</td>
</tr>
<tr>
<td>CARIHUAOQUERO 220</td>
<td>220</td>
<td>220.78 1.04</td>
<td>221.17 1.01</td>
</tr>
<tr>
<td>CARIHUAOQUERO 23 1.016</td>
<td>22.9</td>
<td>23.16 1.01</td>
<td>23.19 1.01</td>
</tr>
<tr>
<td>CARIHUAOQUERO 138</td>
<td>138</td>
<td>140.06 1.02</td>
<td>140.22 1.02</td>
</tr>
<tr>
<td>TRUJILLO NORTE 220</td>
<td>220</td>
<td>221.45 1.01</td>
<td>221.74 1.01</td>
</tr>
<tr>
<td>GUADALLAIRE 220</td>
<td>220</td>
<td>218.48 0.99</td>
<td>218.93 1.00</td>
</tr>
<tr>
<td>CHILAYO ORTE 220</td>
<td>220</td>
<td>217.13 0.99</td>
<td>217.43 0.99</td>
</tr>
<tr>
<td>CAJAMARCA 220</td>
<td>220</td>
<td>220.00 1.00</td>
<td>220.00 1.00</td>
</tr>
<tr>
<td>KIMAN AYLIU 220</td>
<td>220</td>
<td>220.34 1.00</td>
<td>219.97 1.00</td>
</tr>
<tr>
<td>SHAHUINDO 220</td>
<td>220</td>
<td>220.58 1.00</td>
<td>220.37 1.00</td>
</tr>
<tr>
<td>MINA SHAHUINDO 220</td>
<td>220</td>
<td>220.51 1.00</td>
<td>220.20 1.00</td>
</tr>
<tr>
<td>CONOCOCHA 220</td>
<td>220</td>
<td>224.02 1.02</td>
<td>223.89 1.02</td>
</tr>
<tr>
<td>VEZCARRA 220</td>
<td>220</td>
<td>224.40 1.02</td>
<td>224.25 1.02</td>
</tr>
<tr>
<td>PARAQUIA 220</td>
<td>220</td>
<td>219.94 1.00</td>
<td>219.93 1.00</td>
</tr>
<tr>
<td>TINGO MARIA 220</td>
<td>220</td>
<td>217.29 0.99</td>
<td>217.77 0.99</td>
</tr>
<tr>
<td>TINGO MARIA 138</td>
<td>138</td>
<td>142.91 1.04</td>
<td>143.69 1.04</td>
</tr>
<tr>
<td>AUCAYACU 138</td>
<td>138</td>
<td>139.99 1.01</td>
<td>141.67 1.01</td>
</tr>
<tr>
<td>TUCACHE 138</td>
<td>138</td>
<td>133.43 0.97</td>
<td>136.67 0.99</td>
</tr>
<tr>
<td>BELLAVISTA 138</td>
<td>138</td>
<td>125.57 0.95</td>
<td>130.29 0.99</td>
</tr>
<tr>
<td>JUANJU 23</td>
<td>22.9</td>
<td>220.76 0.96</td>
<td>220.92 1.00</td>
</tr>
<tr>
<td>MOYOBAMBA 138</td>
<td>138</td>
<td>123.00 0.93</td>
<td>130.29 0.98</td>
</tr>
<tr>
<td>TARAPOTO 138</td>
<td>138</td>
<td>123.98 0.94</td>
<td>126.78 0.98</td>
</tr>
<tr>
<td>CACLIC 220</td>
<td>220</td>
<td>- - 213.90 0.97</td>
<td>- - 212.54 0.97</td>
</tr>
<tr>
<td>CACLIC 138</td>
<td>138</td>
<td>- - 133.75 0.97</td>
<td>- - 132.90 0.96</td>
</tr>
<tr>
<td>MOYOBAMBA 220</td>
<td>220</td>
<td>- - 220.96 0.96</td>
<td>- - 214.94 0.96</td>
</tr>
<tr>
<td>MOYOBAMBA 138</td>
<td>138</td>
<td>- - 229.22 0.95</td>
<td>- - 206.66 0.94</td>
</tr>
<tr>
<td>MOYOBAMBA 220</td>
<td>220</td>
<td>- - 228.56 0.99</td>
<td>- - 225.22 0.93</td>
</tr>
<tr>
<td>MOYOBAMBA 138</td>
<td>138</td>
<td>- - 130.35 0.99</td>
<td>- - 128.43 0.97</td>
</tr>
</tbody>
</table>

Tabla 4.5 Perfiles de tension en barras-Maxima demanda 2016-2017

De los resultados se observa que cuando se produce el ingreso del nuevo proyecto, las sub-tensiones presentes en las barras de 132 kV y 138 kV del escenario sin proyecto, logran ser mitigadas, llevándolas dentro de los límites admisibles de operación.

4.3.6. ANÁLISIS EN CONTINGENCIA.
El análisis de contingencias comprende desconexiones de líneas que varían significativamente la operación en la zona de influencia del proyecto. Estas se mencionan a continuación:

- **Contingencia 1**: Fuera de servicio la L.T. Trujillo Norte – Cajamarca Norte 220 kV (L-2260).

- **Contingencia 2**: Fuera de servicio la L.T. Cajamarca Norte – Shahuindo de 220 Kv doble terna.

RESULTADOS DE CONTINGENCIAS.

<table>
<thead>
<tr>
<th>Contingencia</th>
<th>SIN PROYECTO</th>
<th>CON PROYECTO</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estiaje Máxima Demanda</td>
<td>Estiaje Mínima Demanda</td>
<td>Estiaje Máxima Demanda</td>
</tr>
<tr>
<td>F/S 220 kV TRUJILLO NORTE- CAJAMARCA NORTE</td>
<td>Subtensión: TARAPOTO_138 (0.94 pu) MOYOBAMBA EXISTENTE_138 (0.93 pu) Sobrecarga: LT TINGO MARIA_AUCAYACU L1122 (110.49 %) LT AUCAYACU-TOCACHE L124 (98.18 %) LT TOCACHE-JUANJUI L1016 (100.16 %)</td>
<td>Operación del sistema eléctrico dentro de los límites permisibles</td>
<td>Subtensión: MOYOBAMBA Nueva (0.93 pu) Sobrecarga: LT Chuclayo-Oeste-Catinaquito L2240 (104.67 %)</td>
</tr>
<tr>
<td>F/S 220 kV CAJAMARCA NORTE- SHAHUINDONDO BEL.TIRNA</td>
<td>Subtensión: TARAPOTO_138 (0.94 pu) MOYOBAMBA EXISTENTE_138 (0.93 pu) Sobrecarga: LT TINGO MARIA_AUCAYACU L1122 (110.44 %) LT AUCAYACU-TOCACHE L124 (68.14 %) LT TOCACHE-JUANJUI L1016 (100.48 %)</td>
<td>Operación del sistema eléctrico dentro de los límites permisibles</td>
<td>Subtensión: MOYOBAMBA_220 kV (0.93 pu) Sobrecarga: LT TINGO MARIA_AUCAYACU L1122 (128.69 %) LT AUCAYACU-TOCACHE L1124 (125.49 %) LT TOCACHE-JUANJUI L1016 (116.8 %) LT JUANJUI-BELAVISTA L1017 (102.68 %)</td>
</tr>
</tbody>
</table>

Tabla N° 4.6 Resultados de contingencia 2016
4.3. DISCUSIÓN DE RESULTADOS DEL FLUJO DE POTENCIA EN ESTADO ESTACIONARIO.

En los escenarios de mínima demanda del sistema, en las condiciones “sin considerar el proyecto” y “considerando el proyecto”, no se presentan subtensiones ni sobretensiones en las barras principales del sistema eléctrico del proyecto.

De los resultados obtenidos para el año 2016, se observa que con el ingreso del nuevo proyecto las condiciones de operación mejoran, encontrándose dentro de los límites de operación.

4.4. ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS DE CORTO CIRCUITO.

Analizar el impacto sobre los niveles de cortocircuito en la zona en estudio, debido
a la operación de las instalaciones que conforman el Proyecto. Verificar el correcto dimensionamiento de los equipos de maniobra y protección que conforman el Proyecto.

4.4.1. CONSIDERACIONES.

Las simulaciones de cortocircuito han sido realizadas según la norma IEC60909 “Short-Circuit Currents in Three-Phase A.C.” que considera:

- Durante el corto circuito no se modifica el tipo de cortocircuito.

- Durante la falla no existe cambio en la red.

- La impedancia de los transformadores es referida al tap de la posición principal.

- Se utilizan las reactancias subtransitorias en las máquinas.

4.4.2. METODOLOGÍA.

El cálculo de cortocircuito se realiza en el horizonte de estudio, para los años 2016 y 2017, en las condiciones “sin considerar el proyecto” y “considerando el proyecto”, a manera de verificar el impacto de las nuevas instalaciones en el sistema eléctrico.

Las evaluaciones de cortocircuito comprenderán fallas monofásicas, bifásicas a tierra y trifásicas con valor de resistencia de falla de 0 ohm, y serán realizadas sobre las barras principales y pertenecientes a la zona de influencia del proyecto.

En las tablas de resultados se muestran:

- $S''k$: Potencia inicial de cortocircuito

- $I''k$: Corriente inicial de cortocircuito
4.4.3. ESCENARIO DE ANÁLISIS.

Las evaluaciones serán realizadas en los escenarios de máxima demanda, debido a que en estos escenarios se presenta los mayores aportes de cortocircuito del sistema eléctrico.

4.4.4. RESULTADOS DE CORTOCIRCUITO.

De los resultados de cortocircuito, se concluye que los niveles de ruptura de los interruptores de 220 kV que pertenecen al proyecto (40 kA), se encuentran muy por encima de los valores de cortocircuito calculados en las instalaciones nuevas del proyecto.

En el Anexo Nº 3 se muestran los resultados gráficos de las simulaciones de cortocircuito. A continuación se describen los resultados del cálculo de cortocircuito.

CORTOCIRCUITO MONOFÁSICO – AÑO 2016.

En las siguientes tablas se muestran los resultados del cálculo de cortocircuito monofásico.

<table>
<thead>
<tr>
<th>Barra</th>
<th>Tens. Nom.</th>
<th>Sk" A</th>
<th>Ik"A</th>
<th>MVA</th>
<th>kA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARHUAQUERO_220</td>
<td>220</td>
<td>471,07</td>
<td>3,71</td>
<td>661,36</td>
<td>5,21</td>
</tr>
<tr>
<td>TRUJILLO NORTE_220</td>
<td>220</td>
<td>1117,67</td>
<td>8,8</td>
<td>1131,22</td>
<td>8,91</td>
</tr>
<tr>
<td>GUADALUPE_220</td>
<td>220</td>
<td>644,51</td>
<td>5,07</td>
<td>654,83</td>
<td>5,16</td>
</tr>
<tr>
<td>CHICLAYO OESTE_220</td>
<td>220</td>
<td>725,9</td>
<td>5,71</td>
<td>771,25</td>
<td>6,07</td>
</tr>
<tr>
<td>CAJAMARCA_220</td>
<td>220</td>
<td>539,33</td>
<td>4,25</td>
<td>765,65</td>
<td>6,03</td>
</tr>
<tr>
<td>KIMAN AYLLU_220</td>
<td>220</td>
<td>746,92</td>
<td>5,88</td>
<td>798,27</td>
<td>6,28</td>
</tr>
<tr>
<td>SHAHUINDO_220</td>
<td>220</td>
<td>438,72</td>
<td>3,45</td>
<td>511</td>
<td>4,02</td>
</tr>
<tr>
<td>MINA SHAHUINDO_220</td>
<td>220</td>
<td>367,44</td>
<td>2,89</td>
<td>416,4</td>
<td>3,28</td>
</tr>
<tr>
<td>CONOCOCHA_220</td>
<td>220</td>
<td>650,96</td>
<td>5,12</td>
<td>656,07</td>
<td>5,17</td>
</tr>
<tr>
<td>VIZCARRA_220</td>
<td>220</td>
<td>709,59</td>
<td>5,59</td>
<td>711,68</td>
<td>5,6</td>
</tr>
</tbody>
</table>

Resultados de cortocircuito monofásico.

En el Anexo Nº 3 se muestran los resultados gráficos de las simulaciones de cortocircuito. A continuación se describen los resultados del cálculo de cortocircuito.

4.4.4. RESULTADOS DE CORTOCIRCUITO.

De los resultados de cortocircuito, se concluye que los niveles de ruptura de los interruptores de 220 kV que pertenecen al proyecto (40 kA), se encuentran muy por encima de los valores de cortocircuito calculados en las instalaciones nuevas del proyecto.

En el Anexo Nº 3 se muestran los resultados gráficos de las simulaciones de cortocircuito. A continuación se describen los resultados del cálculo de cortocircuito.

CORTOCIRCUITO MONOFÁSICO – AÑO 2016.

En las siguientes tablas se muestran los resultados del cálculo de cortocircuito monofásico.
CORTOCIRCUITO TRIFÁSICO – AÑO 2016.

En las siguientes tablas se muestran los resultados del cálculo de cortocircuito trifásico.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estiaje maxima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sk" A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kV</td>
</tr>
<tr>
<td>CARHUAQUERO_220</td>
<td>220</td>
<td>1221,82</td>
</tr>
<tr>
<td>TRUJILLO NORTE_220</td>
<td>220</td>
<td>2698,46</td>
</tr>
<tr>
<td>GUADALUPE_220</td>
<td>220</td>
<td>1791,09</td>
</tr>
<tr>
<td>CHICLAYO OESTE_220</td>
<td>220</td>
<td>1789,69</td>
</tr>
<tr>
<td>CAJAMARCA_220</td>
<td>220</td>
<td>1313,31</td>
</tr>
<tr>
<td>KIMAN AYL LU_220</td>
<td>220</td>
<td>2203,52</td>
</tr>
<tr>
<td>SHAHUINDO_220</td>
<td>220</td>
<td>1443,04</td>
</tr>
<tr>
<td>MINA SHAHUINDO_220</td>
<td>220</td>
<td>1271,57</td>
</tr>
<tr>
<td>CONOCOCHA_220</td>
<td>220</td>
<td>2681,6</td>
</tr>
<tr>
<td>VIZCARRA_220</td>
<td>220</td>
<td>2373,17</td>
</tr>
<tr>
<td>PARAGSHA_220</td>
<td>220</td>
<td>4082,82</td>
</tr>
<tr>
<td>HILARION_220</td>
<td>220</td>
<td>2275,63</td>
</tr>
<tr>
<td>TINGO MARIA_220</td>
<td>220</td>
<td>1301,35</td>
</tr>
<tr>
<td>TINGO MARIA_138</td>
<td>138</td>
<td>847,19</td>
</tr>
<tr>
<td>AUCAYACU_138</td>
<td>138</td>
<td>484,26</td>
</tr>
<tr>
<td>TOCACHE_138</td>
<td>138</td>
<td>278,02</td>
</tr>
<tr>
<td>BELLA VISTA_138</td>
<td>138</td>
<td>211,54</td>
</tr>
<tr>
<td>JUANJUL_23</td>
<td>22,9</td>
<td>60,03</td>
</tr>
<tr>
<td>MOYOBAMBA_138</td>
<td>138</td>
<td>192,85</td>
</tr>
<tr>
<td>TARAPOTO_138</td>
<td>138</td>
<td>224,91</td>
</tr>
<tr>
<td>CACLIC_220</td>
<td>220</td>
<td>-</td>
</tr>
<tr>
<td>CACLIC_138</td>
<td>138</td>
<td>-</td>
</tr>
<tr>
<td>CACLIC_23</td>
<td>23</td>
<td>-</td>
</tr>
</tbody>
</table>

En las siguientes tablas se muestran los resultados del cálculo de cortocircuito monofásico.
<table>
<thead>
<tr>
<th>Barra</th>
<th>Tens. Nom.</th>
<th>Rsresultados de cortocircuito monofasico 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avenida maxima Sin proyecto Con proyecto</td>
</tr>
<tr>
<td></td>
<td>kV MVA kA</td>
<td>kV MVA kA</td>
</tr>
<tr>
<td>CARHUAQUERO_220</td>
<td>220</td>
<td>462.67 3.64 651.42 5.13</td>
</tr>
<tr>
<td>CARHUAQUERO_23</td>
<td>22.9</td>
<td>66.14 5 67.56 5.11</td>
</tr>
<tr>
<td>CARHUAQUERO_138</td>
<td>138</td>
<td>120.63 1.51 125.78 1.58</td>
</tr>
<tr>
<td>TRUJILLO NORTE_220</td>
<td>220</td>
<td>1092 8.6 1104.73 8.7</td>
</tr>
<tr>
<td>GUADALUPE_220</td>
<td>220</td>
<td>627.84 4.94 639.28 5.03</td>
</tr>
<tr>
<td>CHICLAYO OESTE_220</td>
<td>220</td>
<td>683.96 5.38 729.61 5.74</td>
</tr>
<tr>
<td>CAJAMARCA_220</td>
<td>220</td>
<td>537.73 4.23 757.95 5.97</td>
</tr>
<tr>
<td>KIMAN AYLLU_220</td>
<td>220</td>
<td>747.68 5.89 797.64 6.28</td>
</tr>
<tr>
<td>SHAHUINDO_220</td>
<td>220</td>
<td>438.19 3.45 508.88 4.01</td>
</tr>
<tr>
<td>MINA SHAHUINDO_220</td>
<td>220</td>
<td>367.07 2.89 415.33 3.27</td>
</tr>
<tr>
<td>CONOCOCHA_220</td>
<td>220</td>
<td>664.71 5.23 669.65 5.27</td>
</tr>
<tr>
<td>VIZCARRA_220</td>
<td>220</td>
<td>788.6 6.21 790.88 6.23</td>
</tr>
<tr>
<td>PARÁGSHA_220</td>
<td>220</td>
<td>1322.09 10.41 1323.6 10.42</td>
</tr>
<tr>
<td>HILARION_220</td>
<td>220</td>
<td>629.82 4.96 632.13 4.98</td>
</tr>
<tr>
<td>TINGO MARIA_220</td>
<td>220</td>
<td>521.31 4.1 526.64 4.15</td>
</tr>
<tr>
<td>TINGO MARIA_138</td>
<td>138</td>
<td>457.02 5.74 467.8 5.87</td>
</tr>
<tr>
<td>AUCAAYACU_138</td>
<td>138</td>
<td>153.43 1.93 157.37 1.98</td>
</tr>
<tr>
<td>TOCACHE_138</td>
<td>138</td>
<td>82.39 1.03 87.32 1.1</td>
</tr>
<tr>
<td>BELLAVISTA_138</td>
<td>138</td>
<td>86.2 1.13 106.01 1.39</td>
</tr>
<tr>
<td>JUANJUL_23</td>
<td>22.9</td>
<td>27.29 2.06 28.76 2.18</td>
</tr>
<tr>
<td>MOYOBAMBA_138</td>
<td>138</td>
<td>84.93 1.11 199.28 2.61</td>
</tr>
<tr>
<td>TARAPOTO_138</td>
<td>138</td>
<td>88.29 1.16 123.93 1.63</td>
</tr>
<tr>
<td>CACLIC_220</td>
<td>220</td>
<td>- - 261.83 2.06</td>
</tr>
<tr>
<td>CACLIC_138</td>
<td>138</td>
<td>- - 175.77 2.21</td>
</tr>
<tr>
<td>CACLIC_23</td>
<td>22.9</td>
<td>- - 0 0</td>
</tr>
<tr>
<td>MOYOBAMBA_220</td>
<td>220</td>
<td>- - 216.31 1.7</td>
</tr>
<tr>
<td>MOYOBAMBA_22.9</td>
<td>22.9</td>
<td>- - 0 0</td>
</tr>
<tr>
<td>MOYOBAMBANUEVA_138</td>
<td>138</td>
<td>- - 201.78 2.65</td>
</tr>
</tbody>
</table>

Tabla 4.10 Cortocircuito monofasico en barras - Avenida 2017

En las siguientes tablas se muestran los resultados del cálculo de cortocircuito trifásico.
4.5. DISCUSIÓN DE LOS RESULTADOS DE CORTO CIRCUITO.

De las tablas 4.8 se observa que los máximos valores de cortocircuito monofásico en las barras de 220 kV se presentan en la subestación Paragsha con 10.43 kA, en las barras de 138 kV se presentan en la subestación Tingo María con 7.77 kA y en las barras de 22.9 kV se presentan en la subestación Carhuaquero con 5.11 kA.

De las tablas 4.9 se observa que los máximos valores de cortocircuito trifásico en las barras de 220 kV se presentan en la subestación Paragsha con 10.73 kA, en las...
barras de 138 kV se presentan en la subestación Tingo María con 3,6 kA y en las barras de 22,9 kV se presentan en la subestación Juanji con 2.18 kA.

CONCLUSIONES

[1.] Considerando la operación del sistema de transmisión troncal regional en la máxima y mínima transmisión de potencia para la LT Carhuaquero – Cajamarca Norte 220 kV - Caclic, se concluye que el sistema presenta perfiles de tensión adecuados en las barras de las subestaciones de envío y recepción.

[2.] El ingreso al SEIN del nuevo proyecto, ayudará a mejorar las condiciones de operación en el sistema Tocache – Tarapoto – Moyobamba 138 kV. En todos los escenarios de operación en contingencia se presentan niveles de operación adecuados.
[3.] De los resultados del cálculo de cortocircuito, se observa que estos valores se encuentran por debajo de los niveles de ruptura de los interruptores que se instalarán en el nivel de 220 kV.

[4.] De los resultados del análisis de estabilidad transitoria se observa que el sistema eléctrico no pierde estabilidad ante las fallas trifásicas y monofásicas aplicadas en la línea de transmisión del proyecto y en líneas aledañas al proyecto.

RECOMENDACIONES

[1.] De acuerdo a los resultados se observa que la máxima tensión que se presenta en SE Cálic es de 1.06 p.u. Consideramos que esta tensión no afectaría la operación durante la energización de la LT Cálic – Cajamarca norte. Además, los reactivos entregados por el SVC conectado en la SE Cajamarca Norte se encuentran dentro de los límites permisibles en todos los escenarios de operación. Por lo tanto, no se recomienda la instalación de un reactor de barra en SE Cálic.

[2.] Se recomienda realizar un estudio integrado de los sistemas de protecciones ante la puesta en servicio de la LT Carhuaquero – Cajamarca Norte - Caclic interconectado al SEIN debido a la demanda de energía eléctrica en la zona norte del país.

[3.] Se recomienda extender el estudio de análisis de seguridad al criterio N-2.

[4.] Se recomienda extender el estudio de análisis de transitorios electromagnéticos para la energización de los autotransformadores del proyecto en mención.
BIBLIOGRAFÍA

ANEXOS
ANEXO 01
FLUJO DE POTENCIA
AÑO 2016
OPERACIÓN NORMAL
SIN CONSIDERAR EL PROYECTO
ESTIAJE MAXIMA Y MINIMA DEMANDA
AÑO 2017
OPERACIÓN NORMAL
SIN CONSIDERAR EL PROYECTO
AVENIDA MAXIMA Y MINIMA DEMANDA
<table>
<thead>
<tr>
<th>Line</th>
<th>Voltage, Magnitude [kV]</th>
<th>Active Power [MW]</th>
<th>Reactive Power [Mvar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE CHICLAYO OESTE 220 KV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE GUADALUPE 220 KV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE CAJAMARCA NORTE 220 KV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE TRUJILLO NORTE 220 KV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE SHAUINDO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mina Shahuindo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE CONOCOCHA 220 KV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE VIZCARRA 220 KV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE PARAGSHA 220 KV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE CH CARHUACERO</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
</tr>
<tr>
<td>CH CAÑA BRAVA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AÑO 2016
OPERACIÓN NORMAL CONSIDERANDO
EL PROYECTO ESTIAJE MAXIMA Y
MINIMA DEMANDA
AÑO 2017
OPERACIÓN NORMAL CONSIDERANDO
EL PROYECTO AVENIDA MAXIMA Y
MINIMA DEMANDA
ANEXO 02
FLUJO DE POTENCIA EN OPERACIÓN EN CONTINGENCIA
AÑO 2016
OPERACIÓN EN CONTINGENCIA SIN
CONSIDERAR EL PROYECTO ESTIAJE
MAXIMA Y MINIMA DEMANDA

Contingencia 1:
F/S LT 220KV TRUJILLO NORTE CAJAMARCA NORTE
AÑO 2016
OPERACIÓN EN CONTINGENCIA SIN
CONSIDERAR EL PROYECTO ESTIAJE
MAXIMA Y MINIMA DEMANDA

Contingencia 2:
F/S LT 220KV CAJAMARCA NORTE SHAHUINDO 2T
AÑO 2017
OPERACIÓN EN CONTINGENCIA SIN
CONSIDERAR EL PROYECTO AVENIDA
MAXIMA Y MINIMA DEMANDA

Contingencia 1:
F/S LT 220KV TRUJILLO NORTE CAJAMARCA NORTE
AÑO 2017
OPERACIÓN EN CONTINGENCIA SIN CONSIDERAR EL PROYECTO AVENIDA MAXIMA Y MINIMA DEMANDA

Contingencia 2:
F/S LT 220KV CAJAMARCA NORTE SHAHUINDO 2T
AÑO 2016
OPERACIÓN EN CONTINGENCIA
CONSIDERANDO EL PROYECTO
ESTIAJE MAXIMA Y MINIMA DEMANDA

Contingencia 1:
F/S LT 220KV TRUJILLO NORTE CAJAMARCA NORTE
AÑO 2016
OPERACIÓN EN CONTINGENCIA
CONSIDERANDO EL PROYECTO
ESTIAJE MAXIMA Y MINIMA DEMANDA

Contingencia 2:
F/S LT 220KV CAJAMARCA NORTE SHAHUINDO 2T
AÑO 2016
OPERACIÓN EN CONTINGENCIA
CONSIDERANDO EL PROYECTO
AVENIDA MAXIMA Y MINIMA DEMANDA
Contingencia 1:
F/S LT 220KV TRUJILLO NORTE CAJAMARCA NORTE
AÑO 2016
OPERACIÓN EN CONTINGENCIA
CONSIDERANDO EL PROYECTO
AVENIDA MAXIMA Y MINIMA DEMANDA

Contingencia 2:
F/S LT 220KV CAJAMARCA NORTE SHAHUINDO 2T
ANEXO 03
COROTOCIRCUITO
AÑO 2016
CONSIDERANDO PROYECTO
ESTIJE MAXIMA DEMANDA

Falla monofásica
Falla trifásica
AÑO 2017
CONSIDERANDO PROYECTO
AVENIDA MAXIMA DEMANDA

Falla monofásica
Falla trifásica
ANEXO 04
ANALISIS DE TRANSITORIOS.
AÑO 2016-F1

CORTOCIRCUITO TRIFASICO DE LA LINEA TRUJILLO NORTE – CAJAMARCA NORTE 220KV CON APERTURA TRIFASICO Y DESCONEXION DE LA LINEA
AÑO 2016-F2
CORTOCIRCUITO TRIFASICO DE LA LINEA
CHICLAYO OESTE - CARHUAQUERO 220KV
CON APERTURA TRIFASICO Y
DESCONEXION DE LA LINEA
AÑO 2017-F1
CORTOCIRCUITO TRIFASICO DE LA LINEA
TRUJILLO NORTE – CAJAMARCA NORTE 220KV
CON APERTURA TRIFASICO Y
DESCONEXION DE LA LINEA
AÑO 2017-F2
CORTOCIRCUITO TRIFASICO DE LA LINEA
CHICLAYO OESTE - CARHUAQUERO 220KV
CON APERTURA TRIFASICO Y
DESCONEXION DE LA LINEA
CPato G1: Positive-Sequence Voltage, Magnitude in p.u.
Carhq G1: Positive-Sequence Voltage, Magnitude in p.u.
Caba Brava: Positive-Sequence Voltage, Magnitude in p.u.
Malac G4: m:u1:bus1
Quitaracsa G1: Positive-Sequence Voltage, Magnitude in p.u.
Sam G1: Positive-Sequence Voltage, Magnitude in p.u.
<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>50.00</th>
<th>0.1000</th>
<th>1.9198</th>
<th>3.9396</th>
<th>5.9595</th>
<th>7.9793</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACLIC220:</td>
<td>C-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAJAMARCA_220:</td>
<td>Line-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARHU220:</td>
<td>Line-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONOCOCHA220:</td>
<td>Line-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEGUIA/GUADALUPE_220:</td>
<td>Line-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIMAN AYLLU_220:</td>
<td>Line-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOYOB220:</td>
<td>Line-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETNOR/TRUJILLO_220A:</td>
<td>Line-Line Voltage, Magnitude in kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FALLA 3F Y APERTURA TRIFASICA

LT CHICLAYO OESTE - CARHUQUERO

CON PROYECTO AVENIDA 2017 MAXIMA DEMANDA